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Abstract: This paper presents a novel approach to improving database anomaly detection efficiency 
through sample difficulty estimation. Traditional anomaly detection methods often apply uniform 
computational resources across all data samples regardless of their complexity, resulting in ineffi-
cient resource utilization. Our framework addresses this limitation by quantifying the "difficulty" 
of individual database instances and strategically allocating computational resources where they 
provide maximum benefit. The proposed model combines isolation scores, density-based metrics, 
and surprise adequacy measurements to comprehensively assess sample difficulty. Based on these 
assessments, a difficulty-oriented priority assignment mechanism implemented through a sigmoid 
mapping function directs intensive computational efforts to challenging cases while processing sim-
pler samples with lighter methods. Experimental evaluation across five diverse datasets demon-
strates that our approach achieves a 52.84% reduction in average processing time compared to uni-
form approaches, while maintaining or improving detection accuracy. The framework achieves the 
highest Average Percentage of Faults Detected (APFD) score of 0.915, outperforming both tradi-
tional and deep learning-based methods. This research provides a foundation for developing intel-
ligent, resource-aware anomaly detection systems capable of handling the increasing scale and com-
plexity of modern database environments. 
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1. Introduction 
1.1. Importance and Challenges of Database Anomaly Detection 

Database systems represent critical infrastructure for modern organizations, storing 
valuable operational data that drives business decisions. Anomalies within these data-
bases can significantly impact data quality, system performance, and security. Database 
anomaly detection aims to identify abnormal patterns, behaviors, or instances that deviate 
from expected norms. These anomalies range from minor inconsistencies to serious secu-
rity threats including unauthorized access or data breaches. The increasing volume and 
complexity of database operations have made anomaly detection a challenging task. Tra-
ditional approaches often struggle with computational efficiency when processing large-
scale datasets, creating bottlenecks in modern data environments. The sensitivity of de-
tection mechanisms also presents challenges - systems with high sensitivity result in ex-
cessive false positives while low sensitivity risks missing critical anomalies. Most current 

Received: 21 March 2025 

Revised: 29 March 2025 

Accepted: 06 May 2025 

Published: 11 May 2025 

 

Copyright: © 2025 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 

 
Open Access 



Pinnacle Academic Press Proceedings Series https://pinnaclepubs.com/index.php/PAPPS 
 

Vol. 2 (2025) 2  

techniques apply uniform computational resources across all data samples regardless of 
their characteristics, leading to inefficient resource utilization. This one-size-fits-all ap-
proach neglects the fact that some anomalies require more sophisticated analysis than oth-
ers. Recent research has highlighted limitations in both traditional rule-based approaches 
and newer machine learning methods when facing large-scale, complex database envi-
ronments. Detection algorithms need to balance accuracy, efficiency, and adaptability to 
remain effective across diverse database architectures and operational conditions. 

1.2. Potential of Sample Difficulty-Based Approaches in Anomaly Detection 
The concept of sample difficulty estimation offers promising avenues for improving 

anomaly detection efficiency in database systems. This approach recognizes that not all 
data samples require equal computational attention-some anomalies are inherently more 
difficult to detect than others. By quantifying the "difficulty" of individual samples, detec-
tion systems can strategically allocate resources where they provide maximum benefit. 
Difficulty estimation enables prioritization mechanisms that focus intensive computa-
tional efforts on challenging cases while processing simpler samples with lighter methods. 
This adaptivity addresses a fundamental limitation in current systems that process all 
samples with identical methodologies regardless of their complexity. Sample difficulty 
can be assessed through multiple dimensions including distance from established norms, 
feature space characteristics, and historical detection patterns. Recent studies have 
demonstrated that integrating difficulty assessment can reduce computational overhead 
while maintaining or even improving detection accuracy. The approach aligns with prin-
ciples from active learning and computational resource optimization fields, bringing es-
tablished theoretical frameworks into database anomaly detection contexts. Prior research 
in input prioritization for deep learning systems has shown significant efficiency improve-
ments when testing resources are directed toward samples with higher anomaly potential. 
Extending these concepts to database environments offers opportunities to overcome ex-
isting efficiency barriers. Sample difficulty estimation provides a foundation for develop-
ing intelligent, resource-aware anomaly detection systems capable of handling the in-
creasing scale and complexity of modern database environments. 

2. Related Work 
2.1. Overview of Traditional Database Anomaly Detection Methods 

Traditional database anomaly detection approaches primarily rely on statistical 
methods, rule-based systems, and knowledge-driven techniques. Statistical approaches 
establish normal behavior profiles by analyzing historical data distributions and identify-
ing deviations beyond predefined thresholds. These methods include standard deviation 
analysis, interquartile range calculations, and Z-score measurements applied to database 
performance metrics and query patterns [1]. Rule-based approaches implement expert-
defined heuristics to flag suspicious activities or transactions. While these systems pro-
vide interpretability advantages, they require continuous manual updates to remain ef-
fective against evolving anomaly patterns. Signature-based detection maintains databases 
of known anomalous patterns and compares incoming data against these signatures. This 
method performs well for known anomalies but struggles with zero-day anomalies pre-
senting novel patterns. Mosin et al. highlight that traditional methods often lack adapta-
bility when testing datasets grow over time, making them increasingly time-consuming 
and computationally intensive [1]. The effectiveness of traditional methods diminishes in 
modern database environments characterized by massive scale, complex relationships, 
and high-dimensional data structures. Many conventional techniques suffer from rigid 
parameterization requirements that complicate deployment across diverse database ar-
chitectures. 
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2.2. Deep Learning-Based Anomaly Detection Techniques 
Deep learning has transformed anomaly detection capabilities across numerous do-

mains, including database systems. Deep neural networks excel at capturing complex 
non-linear relationships within high-dimensional data that might elude traditional statis-
tical methods. Autoencoders represent one prominent approach, learning compressed 
data representations and identifying anomalies through reconstruction error analysis. 
These models establish normal behavior patterns during training and flag instances with 
high reconstruction errors during inference. Recurrent neural networks (RNNs) address 
the temporal aspects of database operations, modeling sequential patterns in database ac-
cess and query execution. Zhao and Huang have demonstrated how fuzzy cognitive maps 
combined with neural models can improve anomaly detection in operational data while 
reducing false detection rates [2]. The Isolation Forest algorithm, highlighted in Liu et al.'s 
work, has been adapted for database contexts, isolating anomalous database operations 
through recursive partitioning [3]. The parallel implementation of these algorithms on 
platforms like Apache Flink has addressed some scalability limitations [4]. While deep 
learning approaches offer impressive detection accuracy [5], they introduce substantial 
computational overhead that can impact real-time monitoring capabilities [6]. Most im-
plementations process all data instances with uniform computational intensity regardless 
of their anomaly likelihood, leading to resource inefficiencies in production environments 
[7,8]. 

2.3. Applications of Sample Difficulty Estimation in Machine Learning 
Sample difficulty estimation has emerged as a valuable concept across multiple ma-

chine learning domains, though its application to database anomaly detection remains 
limited. This approach quantifies how challenging individual samples are for a given 
learning or detection task. In classification contexts, samples near decision boundaries 
typically present higher difficulty than those in homogeneous regions of the feature space. 
Pan et al. have demonstrated the value of cross-type database analysis for detecting anom-
alies, noting that different data types exhibit varying difficulty levels [4]. Their work on 
parallel detection of heterogeneous cloud resources highlights the efficiency benefits of 
prioritizing computational resources based on data characteristics. The concept of sur-
prise adequacy measures how unexpected a test input is relative to training data, effec-
tively serving as a difficulty metric. Their experiments across multiple datasets showed 
that surprise adequacy-based prioritization achieved superior anomaly detection with 
fewer computational resources. In testing deep learning systems, input prioritization tech-
niques based on sample difficulty have proven effective at revealing erroneous behaviors 
earlier in the testing process. Implementations leveraging isolation forests have shown 
particular promise for database contexts, as they naturally quantify sample difficulty 
through path length measurements. The effectiveness of difficulty-based methods spans 
across domains, from image classification to network security, suggesting broader ap-
plicability to database anomaly detection. The integration of difficulty estimation into 
streaming data environments presents additional challenges but offers significant effi-
ciency gains in real-time monitoring scenarios. 

3. Based on Sample Difficulty Estimation of Anomaly Detection Framework 
3.1. Design of Sample Difficulty Estimation Model 

The proposed sample difficulty estimation model combines multiple metrics to quan-
tify how challenging each database instance is for anomaly detection systems. The model 
incorporates both unsupervised and supervised components to assess difficulty across 
various dimensions. For unsupervised assessment, isolation scores derived from Isolation 
Forest algorithms provide a foundational difficulty metric. These scores reflect how many 
partitions are required to isolate a sample, with anomalous instances typically requiring 
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fewer partitions. Table 1 presents the correlation between isolation scores and actual 
anomaly status across four benchmark datasets. 

Table 1. Correlation between Isolation Scores and Anomaly Status. 

Dataset Sample Size 
Anomaly 

Percentage 
Pearson Correlation 

Spearman 
Correlation 

MNIST 70,000 9.2% -0.721 -0.683 
CIFAR-10 60,000 10.0% -0.694 -0.651 

STL-10 13,000 8.5% -0.758 -0.722 
CloudDB 45,000 2.3% -0.812 -0.793 

Density-based difficulty metrics complement isolation scores by quantifying local 
density structures surrounding each instance. These metrics employ k-nearest neighbor 
calculations with adaptive radius determination. Distance-based surprise adequacy meas-
urements, inspired by Mosin et al., provide an additional difficulty dimension by meas-
uring how distant a sample is from training data distributions in latent feature space [1]. 
Table 2 displays the comparative performance of different difficulty metrics across detec-
tion performance indicators. 

Table 2. Performance Comparison of Difficulty Metrics. 

Difficulty Metric 0.878 0.912 0.865 0.888 12.3 
Density-Based 0.891 0.889 0.903 0.896 18.7 

Surprise Adequacy 0.914 0.927 0.882 0.904 25.2 
Combined (Our Approach) 0.946 0.935 0.921 0.928 29.8 

Figure 1 illustrates the distribution of sample difficulty scores across normal and 
anomalous database instances. The visualization employs t-SNE dimensionality reduction 
to project high-dimensional database features into a 2D space, with color intensity repre-
senting difficulty scores. Anomalous instances (marked with triangles) typically display 
higher difficulty scores than normal instances (circles), though significant overlap exists 
in boundary regions. 

 
Figure 1. Sample Difficulty Distribution Visualization. 

The visualization demonstrates clustering of similar difficulty levels, indicating that 
difficulty is not randomly distributed but rather correlates with underlying data struc-
tures. Regions of high difficulty (darker shades) frequently correspond to decision bound-
aries or transition zones between normal and anomalous instances, highlighting the po-
tential value of prioritizing computational resources in these areas. 

3.2. Difficulty-Oriented Priority Assignment Mechanism 
The difficulty-oriented priority assignment mechanism transforms raw difficulty 

scores into operational priorities that guide the allocation of computational resources. This 
transformation applies a non-linear mapping function that amplifies differences between 
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high-difficulty and low-difficulty samples. The mapping function incorporates both abso-
lute difficulty values and their relative positions within the overall distribution. Table 3 
presents the priority assignment functions evaluated during framework development. 

Table 3. Priority Assignment Functions Comparison. 

Function 
Type 

Mathematical 
Formulation 

Sensitivity to High 
Difficulty 

Discrimination 
Power 

Selecte
d 

Linear 𝑝𝑝 = 𝛼𝛼 × 𝑑𝑑 + 𝛽𝛽 Low Moderate No 
Exponential 𝑝𝑝 = 𝑒𝑒𝑘𝑘𝑘𝑘 Very High Poor No 

Sigmoid 𝑝𝑝 = 1/�1 + 𝑒𝑒−𝑘𝑘(𝑘𝑘−𝑣𝑣)� Moderate High Yes 
Logarithmic 𝑝𝑝 = log(𝑑𝑑 + 1) Moderate Low No 

Figure 2 displays the distribution of priority values under different assignment func-
tions. The x-axis represents raw difficulty scores, while the y-axis shows the correspond-
ing priority values. Four curves represent different assignment functions (linear, expo-
nential, sigmoid, and logarithmic), with the sigmoid function (highlighted) demonstrating 
the most balanced distribution. 

 
Figure 2. Priority Distribution Under Different Assignment Functions. 

The visualization reveals how different functions emphasize various regions of the 
difficulty spectrum. The exponential function heavily prioritizes the most difficult sam-
ples but provides little differentiation among medium and low-difficulty samples. The 
logarithmic function offers better discrimination among low-difficulty samples but com-
presses differences among high-difficulty instances. The sigmoid function provides the 
most balanced approach with sufficient differentiation across the entire difficulty spec-
trum. 

3.3. Adaptive Computational Resource Allocation Strategy 
The adaptive resource allocation strategy dynamically adjusts the computational in-

tensity applied to each database instance based on its assigned priority. This strategy im-
plements a multi-tiered processing framework where higher-priority samples receive 
more sophisticated analysis while lower-priority samples undergo streamlined pro-
cessing. Table 4 outlines the tiered processing approach with corresponding resource al-
locations. 

  

https://pinnaclepubs.com/index.php/PAPPS


Pinnacle Academic Press Proceedings Series https://pinnaclepubs.com/index.php/PAPPS 
 

Vol. 2 (2025) 6  

Table 4. Multi-tiered Processing Framework. 

Priority 
Range 

Processing 
Tier 

Detection Models 
Applied 

Feature 
Set 

Computational 
Resources 

Time Budget 
(ms) 

0.0-0.3 Tier 1 Statistical Only Basic 10% 5.2 
0.3-0.6 Tier 2 Statistical + Light 

ML 
Extended 25% 12.8 

0.6-0.8 Tier 3 Statistical + 
Advanced ML 

Full 30% 18.5 

0.8-1.0 Tier 4 Statistical + Deep 
Learning 

Full+ 35% 27.3 

Resource allocation operates at multiple levels, including feature extraction depth, 
model complexity, ensemble size, and iteration limits. The strategy incorporates feedback 
mechanisms that adjust allocations based on intermediate detection results. Dynamic ad-
justment occurs both within processing batches and across timeline segments to adapt to 
evolving data characteristics. 

Figure 3 presents a comparative analysis of resource utilization efficiency between 
uniform allocation (baseline) and adaptive allocation (proposed approach). The visualiza-
tion plots computational resources (x-axis) against detection performance (y-axis) for both 
approaches, with increasing dataset sizes represented by marker size. 

 
Figure 3. Resource Allocation Efficiency Comparison. 

The graph demonstrates that adaptive allocation consistently achieves higher detec-
tion performance with equivalent or lower computational resources across all dataset 
sizes. The efficiency gap widens as dataset size increases, highlighting the scalability ad-
vantages of the proposed approach. At the largest dataset size, adaptive allocation 
achieves comparable detection performance while utilizing 42.7% fewer computational 
resources than uniform allocation. 

4. Experiments and Result Analysis 
4.1. Experimental Setup and Datasets 

The experiments were conducted on a high-performance computing environment 
with Intel Xeon E5-2680 v4 processors (14 cores, 2.4GHz), 128GB RAM and NVIDIA Tesla 
V100 GPUs. The implementation utilized TensorFlow 2.4 and scikit-learn 0.24.2 frame-
works. Multiple datasets were selected to evaluate the performance across diverse data-
base environments, as summarized in Table 5. 
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Table 5. Experimental Datasets. 

Dataset Source Records Features 
Anomaly 

Percentage 
Database Type 

MNIST-AD MNIST (Modified) 70,000 784 9.21% 
Image Data 

Store 

CIFAR-10-AD 
CIFAR-10 
(Modified) 

60,000 3072 10.03% 
Image Data 

Store 
CloudDB Enterprise Cloud 102,457 147 1.82% Operational DB 
Financial-

Trans 
Financial 

Institution 
284,807 29 0.17% Transaction DB 

IoT-Sensors 
Smart 

Manufacturing 
943,528 21 2.41% Time-Series DB 

The preprocessing pipeline included normalization, feature selection, and dimen-
sionality reduction techniques appropriate for each dataset. Training / testing splits main-
tained a 70 / 30 ratio, with stratified sampling to preserve anomaly distributions. Hyperpa-
rameter optimization employed Bayesian optimization with five-fold cross-validation. 

Figure 4 depicts the distribution of anomalies across the five experimental datasets. 
The visualization employs a parallel coordinates plot where each vertical axis represents 
a different dataset, and lines connect corresponding percentile points in the distribution 
of anomaly characteristics. 

 

Figure 4. Anomaly Distribution Across Datasets. 

The plot reveals significant variations in anomaly distribution patterns across da-
tasets. Financial-Trans exhibits highly concentrated anomalies with minimal spread, 
while IoT-Sensors shows a broader distribution with multiple clusters. Cloud DB anoma-
lies form distinct bands, indicating potential sub-categories of anomalous behavior. These 
distribution differences highlight the importance of adaptive detection frameworks that 
can adjust to varying anomaly characteristics. 

4.2. Efficiency and Accuracy Evaluation 
The efficiency and accuracy evaluations focused on computational resource utiliza-

tion, detection speed, and detection performance metrics. Table 6 presents the compara-
tive performance across efficiency metrics for the proposed difficulty-based approach and 
the baseline uniform approach. 

Table 6. Efficiency Metrics Comparison. 

Metric Dataset 
Baseline 

(Uniform) 
Proposed 

(Difficulty-Based) 
Improvement(%) 

MNIST-AD 18.72 8.43 54.97% 
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Avg. Processing Time 
(ms / record) 

CIFAR-10-
AD 

27.35 13.82 49.47% 

CloudDB 14.58 6.24 57.20% 
Financial-

Trans 
5.83 2.91 50.09% 

IoT-Sensors 3.47 1.65 52.45% 
CPU Utilization (%) Combined 78.4 42.3 46.05% 

Memory Footprint (GB) Combined 34.2 18.7 45.32% 
Energy Consumption 

(kWh) 
Combined 1.73 0.89 48.55% 

Detection accuracy metrics were measured to ensure efficiency gains did not com-
promise detection performance. Table 7 provides the comprehensive accuracy metrics 
across all datasets. 

Table 7. Accuracy Metrics Across Datasets. 

Dataset Method Precision Recall F1-Score AUC-ROC 

MNIST-AD 
Baseline 0.921 0.914 0.917 0.943 

Proposed 0.934 0.928 0.931 0.956 

CIFAR-10-AD 
Baseline 0.887 0.872 0.879 0.912 

Proposed 0.902 0.893 0.897 0.928 

CloudDB 
Baseline 0.953 0.927 0.940 0.968 

Proposed 0.962 0.945 0.953 0.974 

Financial-Trans 
Baseline 0.892 0.814 0.851 0.931 

Proposed 0.908 0.857 0.882 0.947 

IoT-Sensors 
Baseline 0.927 0.901 0.914 0.952 

Proposed 0.942 0.917 0.929 0.961 
Figure 5 illustrates the trade-off between computational efficiency and detection ac-

curacy. The x-axis represents the computational resources utilized (as a percentage of 
baseline), while the y-axis shows detection performance (F1-score). Each dataset is repre-
sented by a different color, with circle markers indicating baseline performance and trian-
gle markers showing the proposed approach. 

 
Figure 5. Efficiency-Accuracy Trade-off Analysis. 

The visualization demonstrates that the proposed difficulty-based approach consist-
ently shifts performance toward the upper-left quadrant (higher accuracy with lower 
computational cost) across all datasets. The most significant improvements occur in the 
Cloud DB dataset, where the approach achieves both the largest efficiency gain and accu-
racy improvement. The Financial-Trans dataset shows a steeper trade-off curve, indicat-
ing greater sensitivity to resource allocation decisions. 
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4.3. Comparative Analysis with Existing Methods 
The proposed framework was compared against state-of-the-art anomaly detection 

methods spanning traditional, machine learning, and deep learning approaches. Table 8 
summarizes the comparative analysis across key performance indicators. 

Table 8. Comparative Analysis with Existing Methods. 

Method Avg. F1-Score 
Avg. Detection Time 

(ms) 
Scalability 

Factor 
APFD Score 

Statistical (Z-score) 0.742 2.83 0.62 0.532 
Isolation Forest 0.831 7.24 0.78 0.679 

Liu et al. [3]  0.857 15.47 0.83 0.709 
Mosin et al. [1]  0.912 17.82 0.71 0.891 
Zhao et al. [2]  0.895 12.35 0.84 0.827 
Pan et al. [4]  0.908 11.73 0.79 0.864 

Proposed 
Approach 

0.918 6.61 0.92 0.915 

The Average Percentage of Faults Detected (APFD) metric, adopted from Mosin et 
al., provides a comprehensive measure of detection efficiency [1]. The proposed approach 
achieved the highest APFD score (0.915), demonstrating superior efficiency-accuracy bal-
ance compared to existing methods. 

Figure 6 presents a radar chart comparing six performance dimensions across differ-
ent detection methods. The dimensions include precision, recall, F1-score, computational 
efficiency, scalability, and adaptability. Each method is represented by a unique polygon, 
with the proposed approach highlighted. 

 
Figure 6. Comparative Detection Performance Across Methods. 

The visualization demonstrates that while some existing methods excel in specific 
dimensions [7-9], the proposed difficulty-based approach exhibits the most balanced per-
formance across all dimensions [10-13]. The approach shows particular strengths in com-
putational efficiency and scalability dimensions, addressing critical limitations of previ-
ous methods [14,15]. The balanced polygon shape of the proposed approach indicates ro-
bust performance across diverse operational conditions [16]. 
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5. Conclusion 
5.1. Research Summary 

This paper has introduced a novel anomaly detection framework for database sys-
tems that leverages sample difficulty estimation to improve computational efficiency 
while maintaining high detection accuracy. The proposed approach addresses critical lim-
itations in existing methods by adaptively allocating computational resources based on 
the estimated difficulty of individual database instances. The difficulty estimation model 
combines isolation scores, density-based metrics, and surprise adequacy measurements 
to comprehensively assess how challenging each sample is for anomaly detection systems. 
Experimental results across five diverse datasets demonstrate significant efficiency im-
provements, with an average processing time reduction of 52.84 % compared to uniform 
approaches. The difficulty-oriented priority assignment mechanism, implemented 
through a sigmoid mapping function, provides balanced differentiation across the diffi-
culty spectrum. The multi-tiered processing framework dynamically adjusts computa-
tional intensity based on assigned priorities, applying more sophisticated analysis to high-
priority samples while processing lower-priority samples with streamlined methods. 
Comparative analysis against state-of-the-art methods reveals that the proposed approach 
achieves the highest Average Percentage of Faults Detected (APFD) score of 0.915, out-
performing both traditional statistical methods and advanced deep learning techniques. 
The framework maintains comparable or superior accuracy metrics across all tested data-
bases while substantially reducing computational resource requirements, energy con-
sumption, and detection latency. 

5.2. Limitations Discussion 
While the proposed framework demonstrates promising results, several limitations 

warrant consideration. The accuracy of difficulty estimation depends heavily on the rep-
resentativeness of historical data used to establish baseline metrics. In rapidly evolving 
database environments, these baselines may become outdated, potentially leading to in-
accurate difficulty assessments. The adaptive resource allocation strategy assumes a fixed 
total computational budget, which may not be appropriate for all operational contexts. 
The framework's performance advantages diminish in scenarios with extremely low 
anomaly rates (below 0.1 %), as observed in portions of the Financial-Trans dataset. The 
current implementation requires a comprehensive preprocessing pipeline specific to each 
database type, limiting seamless deployment across heterogeneous database environ-
ments. The difficulty estimation model introduces additional computational overhead 
during the training phase, though this is offset by efficiency gains during operational de-
tection. Prioritization approaches may exhibit reduced effectiveness when the underlying 
detection algorithm has lower baseline accuracy. The multi-tiered approach assumes clear 
boundaries between processing tiers, which may not reflect the continuous nature of sam-
ple difficulty. Future work should address these limitations through improved difficulty 
estimation techniques, more adaptive resource allocation strategies, and enhanced trans-
fer learning capabilities across database environments. 
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