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Abstract: Mass casualty incidents (MCIs) present significant challenges to emergency medical sys-
tems, frequently overwhelming available resources and necessitating complex triage decisions un-
der severe time constraints. This paper introduces DeepTriage, a real-time artificial intelligence de-
cision support system designed to optimize emergency resource allocation during MCIs. The sys-
tem employs a hybrid neural network architecture that integrates convolutional, recurrent, and 
graph neural networks to process multimodal patient data and generate prioritization recommen-
dations. The DeepTriage framework incorporates privacy-preserving mechanisms, dynamic re-
source optimization algorithms, and an adaptive transmission strategy for deployment in band-
width-constrained environments. Performance evaluation conducted across three diverse datasets 
— TRAUMA-DB, MCI-SIM, and DISASTER-NET — demonstrates superior triage accuracy (92.6%) 
compared to traditional protocols (76.4-79.2%) and existing computational systems (84.5-87.3%). 
The system achieves significant improvements in decision speed (14.8s under benchmarked test 
conditions versus 187.3-245.8s for manual methods in similar scenarios) while maintaining a re-
source utilization efficiency of 0.87. DeepTriage exhibits robust performance across multiple inci-
dent types with minimal degradation under increasing patient loads. Implementation considera-
tions address integration pathways with existing electronic health record systems, training require-
ments for medical personnel, and ethical frameworks governing algorithmic decision support in 
life-critical scenarios. The results indicate substantial potential for AI-driven systems to enhance 
emergency response capabilities during mass casualty incidents through improved triage accuracy, 
resource optimization, and decision consistency. 
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1. Introduction 
1.1. Background and Significance of Mass Casualty Incident Management 

Mass casualty incidents (MCIs) represent extraordinary challenges to healthcare sys-
tems globally, characterized by overwhelming patient volumes that exceed immediately 
available medical resources. The management of these events demands sophisticated ap-
proaches to resource allocation and patient prioritization. Recent advancements in artifi-
cial intelligence (AI) technologies have demonstrated significant potential in enhancing 
decision-making processes across various domains. Fan et al. highlighted the efficacy of 
deep learning-based systems for anomaly detection and timely risk alert generation in 
critical environments [1]. These technological capabilities can be adapted to emergency 
medicine contexts, where rapid assessment and resource distribution are critical for pa-
tient outcomes. The application of machine learning algorithms for pattern recognition, 
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as investigated by Bi et al., offers promising solutions for identifying critical patients and 
optimizing resource utilization during MCIs [2]. Modern emergency departments increas-
ingly recognize the value of low-latency anomaly detection architectures, which Zhang et 
al. demonstrated can provide real-time decision support in complex, data-intensive envi-
ronments [3]. The integration of temporal data processing through graph neural networks, 
explored by Wang et al., presents opportunities to model the dynamic nature of patient 
conditions and resource availability during evolving disaster scenarios [4]. 

1.2. Challenges in Emergency Resource Allocation During Disasters 
Emergency resource allocation during mass casualty incidents encompasses multiple 

interdependent challenges that complicate effective response. The unpredictable nature 
of patient influx resembles the complexity of anomalous flows studied by Su et al., who 
emphasized the importance of analyzing irregularities to maintain system integrity [5]. 
Traditional triage systems often rely on manual assessment procedures that introduce in-
consistencies and delays in critical decision-making processes. The development of stand-
ardized evaluation metrics for automated systems, an approach explored by Liang et al. 
in cross-lingual contexts, represents a crucial step toward establishing reliable AI-assisted 
triage protocols [6]. Resource allocation decisions in emergency settings require transpar-
ent rationales to gain clinical acceptance. Hassan examined interpretability techniques for 
feature importance assessment, which can be applied to explain AI-driven triage decisions 
and build trust among medical professionals [7]. The multi-jurisdictional challenges iden-
tified by Dong in compliance frameworks closely resemble the coordination difficulties 
faced by emergency response agencies. These issues are particularly prominent during 
large-scale disasters [8]. Hospitals and emergency medical services must navigate com-
plex regulatory environments while maintaining operational efficiency during crisis situ-
ations, necessitating intelligent support systems that accommodate diverse procedural re-
quirements and resource constraints. 

1.3. Research Objectives 
This research aims to develop DeepTriage, a real-time AI decision support system for 

emergency resource allocation during mass casualty incidents. The primary objective in-
volves creating an integrated framework that processes multiple data streams to generate 
actionable resource allocation recommendations during crisis events. The system focuses 
on optimizing three critical aspects of emergency response: patient classification accuracy, 
resource allocation efficiency, and decision-making speed. By employing advanced ma-
chine learning techniques, DeepTriage seeks to provide dynamic triage recommendations 
that adapt to evolving incident conditions and resource availability. The research estab-
lishes quantifiable performance metrics for system validation in simulated mass casualty 
scenarios and utilizes these metrics to compare outcomes against traditional triage meth-
odologies. Technical objectives include developing robust algorithms capable of operating 
effectively in low-connectivity environments commonly encountered during disasters. 
The study addresses ethical considerations regarding automated decision support in life-
critical situations through transparent algorithm design and appropriate human oversight 
mechanisms. DeepTriage aims to enhance emergency department preparedness by offer-
ing a deployable solution that integrates with existing electronic health record systems 
and emergency management protocols. This research contributes to the broader field of 
medical informatics by demonstrating practical applications of artificial intelligence in 
healthcare crisis management. 

2. Literature Review 
2.1. Traditional Triage Systems and Their Limitations 

Traditional triage systems in emergency medicine have historically relied on struc-
tured protocols executed by trained medical personnel to categorize patients based on the 
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severity of their conditions and urgency of care requirements. The most widely imple-
mented frameworks include the Emergency Severity Index (ESI), Simple Triage and Rapid 
Treatment (START), and Manchester Triage System (MTS). These methodologies establish 
standardized assessment criteria to stratify patients into priority groups. Wang et al. iden-
tified that conventional prediction models in time-sensitive medical contexts lack the ca-
pability to dynamically adapt to rapidly changing physiological parameters, a limitation 
particularly pronounced in mass casualty scenarios [9]. Standard triage approaches oper-
ate on discrete classification principles with limited capacity to incorporate continuous, 
real-time monitoring data. Ma et al. demonstrated that optimization techniques for feature 
selection can significantly enhance predictive accuracy in complex decision-making envi-
ronments where multiple variables must be simultaneously considered [10]. Traditional 
triage methodologies exhibit notable weaknesses in consistency across different providers 
and settings, introducing potential variability in patient categorization during high-stress 
incidents. The manual nature of conventional assessment procedures creates bottlenecks 
in patient flow, which becomes especially critical during sudden surges in demand. 

2.2. Artificial Intelligence Applications in Emergency Medicine 
Artificial intelligence technologies have shown considerable promise in advancing 

emergency medical services through sophisticated data processing capabilities. Li et al. 
explored efficiency improvements in anomaly detection through sample difficulty esti-
mation; a methodology adaptable to identifying critical patients within heterogeneous 
casualty groups [11]. The application of machine learning algorithms enables more con-
sistent patient assessment compared to subjective human judgment, particularly valuable 
during mass casualty incidents where provider fatigue may compromise decision quality. 
Yu et al. implemented generative adversarial networks for real-time detection of anoma-
lous patterns, a technique that can be repurposed to identify unusual symptom presenta-
tions or unexpected deterioration trajectories in emergency patients [12]. AI systems excel 
at processing multimodal data inputs, including vital signs, medical history, laboratory 
values, and imaging results, to generate comprehensive patient assessments. Ju and Trinh 
demonstrated the efficacy of machine learning approaches in early warning systems for 
identifying supply chain vulnerabilities. Their work showcases how predictive analytics 
can anticipate resource shortages before they impact operational capabilities in emergency 
settings [13]. The integration of natural language processing facilitates rapid extraction of 
relevant information from clinical notes and prior medical records, enabling more in-
formed triage decisions in time-constrained environments. 

2.3. Current Decision Support Technologies for Resource Allocation 
Decision support technologies for emergency resource allocation have evolved from 

simple rule-based systems to sophisticated predictive platforms that incorporate multiple 
data sources. Rao et al. developed jump prediction methodologies for early detection of 
significant changes in complex systems, applicable to anticipating sudden surges in re-
source demands during evolving mass casualty incidents [14]. Contemporary resource 
allocation platforms increasingly incorporate dynamic optimization algorithms that con-
tinuously reassess priorities based on changing patient conditions and resource availabil-
ity. The integration of geographic information systems enables spatial analysis of casualty 
distributions and resource deployment strategies across affected areas. Xiao et al. demon-
strated the effectiveness of LSTM-Attention mechanisms in detecting anomalous patterns 
and predicting risk levels, a capability directly transferable to patient deterioration fore-
casting in emergency departments [15]. Advanced simulation capabilities allow emer-
gency planners to model various disaster scenarios and resource configurations, facilitat-
ing preparedness through virtual training environments. Current technologies face sig-
nificant implementation challenges related to stringent data security protocols and pri-
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vacy protection requirements. Xiao et al. addressed this concern through differential pri-
vacy mechanisms designed to prevent data leakage in algorithmic training processes, an 
essential consideration for systems handling sensitive medical information during crisis 
response [16]. 

3. Methodology and System Architecture 
3.1. DeepTriage Framework Design and Components 

The DeepTriage framework consists of a multi-layered architecture. It is specifically 
designed for real-time processing of emergency data during mass casualty incidents. The 
system incorporates privacy-preserving mechanisms for handling sensitive medical data, 
adapted from the fully homomorphic encryption approach proposed by Zhang et al. for 
medical image processing [17]. This encryption methodology enables secure computation 
on protected patient data without compromising confidentiality during emergency oper-
ations. The framework architecture comprises five primary modules: data acquisition, 
preprocessing, classification, resource allocation, and visualization components. Each 
module operates with specific optimization parameters to maintain low-latency perfor-
mance while preserving high accuracy in decision support recommendations. Table 1, 
which outlines the key components of the DeepTriage framework and their functionalities, 
provides a detailed overview of the system modules. 

Table 1. DeepTriage System Components and Their Functions. 

Component Primary Function Secondary Functions Processing Priority 
Data Acquisition 

Module 
Capture multimodal 

patient data 
Signal validation, Missing 

data detection Critical (P0) 

Preprocessing 
Engine 

Feature extraction, 
Normalization 

Noise reduction, Temporal 
alignment 

High (P1) 

Classification Core Patient severity 
assessment 

Deterioration prediction, 
Stability estimation Critical (P0) 

Resource Allocation 
Optimizer 

Dynamic resource 
assignment 

Constraint satisfaction, 
Utility maximization High (P1) 

Visualization 
Interface 

Decision 
presentation 

Historical comparisons, 
Confidence indicators 

Medium (P2) 

The early warning mechanism implemented in DeepTriage draws inspiration from 
the financial anomaly detection system developed by Dong and Trinh, adapting their tem-
poral pattern recognition approach to identify critical changes in patient status [18]. Table 
2 presents the various data types processed by the system, their sources, and update fre-
quencies in the operational environment. 

Table 2. Input Data Types and Processing Characteristics. 

Data Type Source 
Update 

Frequency 
Data Volume 
(KB/update) 

Processing 
Complexity 

Vital Signs Patient monitors 5 seconds 2.4 O(n) 
Laboratory 

Results Hospital systems On availability 10.8 O(n log n) 

Resource 
Status 

Inventory 
management 

30 seconds 14.2 O(n) 

Staff 
Availability 

Scheduling 
system 5 minutes 8.7 O(n²) 

Patient 
Location Tracking system 10 seconds 6.3 O(n log n) 
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The system architecture diagram illustrates the hierarchical organization of the Deep-
Triage framework, detailing data flows between components and the integration points 
with existing hospital systems through secure interfaces (Figure 1). The diagram employs 
a multi-layered representation with color-coded modules indicating processing priority 
levels. Communication pathways are represented by directional arrows with varying 
thicknesses corresponding to data volume. Security boundaries are demarcated by dashed 
perimeters, with encryption/decryption checkpoints highlighted at system interfaces. 

 
Figure 1. DeepTriage System Architecture and Data Flow. 

3.2. Machine Learning Algorithms for Patient Classification and Prioritization 
The patient classification component utilizes a hybrid model architecture that com-

bines convolutional neural networks for image data processing with graph neural net-
works for relational data analysis. This approach builds upon the graph convolutional 
neural network methodology proposed by Ren et al. for detecting complex patterns in 
interconnected data structures [19]. The classification algorithm incorporates temporal 
dynamics through recurrent neural network layers that capture evolving patient condi-
tions, an approach developed by Kisten for multi-level pattern detection [20]. Table 3 pre-
sents comparative performance metrics for different machine learning models evaluated 
during system development. 

Table 3. Classification Algorithm Performance Comparison. 

Algorithm Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

F1 
Score 

Latency 
(ms) 

Model 
Size (MB) 

Random Forest 78.4 74.2 81.9 0.728 23.4 18.6 
SVM 75.3 72.8 79.1 0.704 18.7 12.3 

DeepTriage CNN 86.7 84.5 88.2 0.834 42.1 75.4 
DeepTriage GNN 88.3 85.9 90.1 0.853 56.8 94.2 

DeepTriage Hybrid 92.6 90.7 93.8 0.902 67.3 107.8 
The negotiation-based prioritization mechanism implemented in patient queuing 

draws conceptually from the adaptive negotiation strategy proposed by Ji et al., adapting 
their market-based negotiation approach to balance competing resource demands during 
mass casualty events [21]. This mechanism dynamically adjusts patient priorities based 
on resource availability, expected treatment outcomes, and system-wide optimization 
goals (Figure 2). 
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Figure 2. Neural Network Architecture for Patient Severity Classification. 

The neural network architecture diagram shows the multi-layered structure of the 
DeepTriage classification model. Input layers accept multimodal patient data, including 
vital signs, laboratory values, and clinical assessments. The network incorporates parallel 
processing paths for different data modalities, with convolutional layers for spatial data, 
recurrent layers for temporal sequences, and graph convolutional layers for relational in-
formation. Attention mechanisms highlight critical features, while skip connections help 
preserve gradient flow through the deep network. The final layers converge to produce 
severity scores and confidence intervals for triage decisions (Table 4). 

Table 4. Prioritization Algorithm Parameters and Optimization Values. 

Parameter Description Default Value Range Optimization Method 
α Deterioration weight factor 0.68 [0.5-0.9] Bayesian optimization 
β Resource consumption estimate 0.47 [0.3-0.7] Grid search 
γ Treatment efficacy coefficient 0.74 [0.6-0.8] Genetic algorithm 
δ Waiting time penalty 0.52 [0.3-0.6] Simulated annealing 
ε System load balancing factor 0.38 [0.2-0.5] Particle swarm 

3.3. Real-Time Data Integration and Processing Mechanisms 
The data integration pipeline employs a multi-stage processing approach with par-

allel execution paths to minimize latency while maintaining data integrity. The system 
implements privacy protection measures aligned with the assessment methods and pro-
tection strategies outlined by Xiao et al. for preventing data leakage in AI systems pro-
cessing sensitive information [22]. Where applicable, data transformation operations are 
optimized for real-time performance through vectorized computation and GPU accelera-
tion. The fairness assurance module incorporates bias detection and mitigation techniques 
adapted from the algorithmic fairness framework proposed by Zhu. This ensures equita-
ble resource allocation decisions across diverse patient populations [23].  

The data flow diagram illustrates the sequence of processing operations applied to 
incoming data streams in the DeepTriage system. The visualization employs a directed 
acyclic graph representation with processing nodes color-coded by computational com-
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plexity. Parallel execution paths are shown for independent data streams, with synchro-
nization points marked at decision junctures. Buffering mechanisms and quality control 
checkpoints are indicated at critical pipeline stages, with latency measurements annotated 
along processing paths (Figure 3). 

 
Figure 3. Real-Time Data Flow and Processing Pipeline. 

The adaptive transmission strategy implemented for remote deployment scenarios 
builds upon the multimedia signal transmission approach developed by Liu et al., opti-
mizing data exchange under bandwidth constraints while preserving critical information 
integrity [24]. Table 5 presents processing latency measurements for different operational 
scenarios, demonstrating system performance under varying load conditions. 

Table 5. System Processing Latency Under Different Load Conditions. 

Scenario Patient 
Load 

Data 
Acquisition 

(ms) 

Preprocessing 
(ms) 

Classification 
(ms) 

Resource 
Allocation 

(ms) 

Total 
Latency 

(ms) 
Normal 

Operations 
10-30 12.4 18.7 42.6 35.8 109.5 

Moderate MCI 30-100 14.8 22.3 48.9 41.2 127.2 
Major MCI 100-300 17.3 25.9 56.4 48.7 148.3 

Catastrophic 300+ 21.6 31.2 67.8 59.4 180.0 

4. Implementation and Performance Evaluation 
4.1. Experimental Setup and Dataset Description 

The DeepTriage system underwent rigorous testing through a comprehensive eval-
uation framework designed to assess its performance across diverse mass casualty inci-
dent scenarios. The experimental environment used a distributed computing architecture 
combined with edge processing capabilities. This setup was designed to simulate real-
world deployment conditions. Testing was conducted using a high-fidelity simulation 
platform that reproduces emergency department workflows and patient progression pat-
terns. McNichols et al. established a precedent for using large language models to handle 
complex error patterns in classification tasks, inspiring our development of hybrid classi-
fication models tailored for triage decision support [25]. Their work on algebra error clas-
sification demonstrated the value of integrating structured knowledge representations 
with machine learning techniques, a principle we applied to medical decision-making 
contexts in DeepTriage. The evaluation utilized three distinct datasets to validate system 
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performance under varying operational conditions, as outlined in Table 6. These datasets 
were chosen to represent diverse incident types and temporal spans, ensuring robust sys-
tem assessment. 

Table 6. Dataset Characteristics for System Evaluation. 

Dataset Source 
Type 

Patient 
Records 

Varia
bles 

Incident 
Types 

Temporal 
Span 

Missing 
Data (%) 

Class 
Distribution 

TRAUM
A-DB 

Retrospect
ive clinical 

4832 78 
Blunt trauma, 
Penetrating 

injuries 
36 months 12.7 

Critical: 23%, 
Severe: 34%, 

Moderate: 27%, 
Minor: 16% 

MCI-
SIM 

Simulated 
scenarios 12,547 64 

Explosions, 
Mass 

shootings, 
Building 
collapses 

N/A 8.3 

Critical: 31%, 
Severe: 37%, 

Moderate: 19%, 
Minor: 13% 

DISAST
ER-NET 

Multi-
center 

registry 
8365 92 

Natural 
disasters, 

Transportatio
n accidents 

48 months 18.5 

Critical: 28%, 
Severe: 32%, 

Moderate: 25%, 
Minor: 15% 

The preprocessing pipeline applied to these datasets included several techniques. 
Data augmentation was used to address class imbalance issues, while synthetic minority 
oversampling enhanced the representation of critical cases. Additionally, missing values 
were imputed using multiple methods. Zhang et al. provided valuable insights on math-
ematical modeling approaches for scorer preferences in assessment tasks, which guided 
our development of a comprehensive scoring system for triage accuracy evaluation [26]. 
Their work on modeling and analyzing scorer preferences in short-answer math questions 
established statistical frameworks that we adapted for medical severity assessment in 
mass casualty contexts. 

The Figure 4 presents a comprehensive visualization of patient characteristic distri-
butions across the training and testing datasets. The main panel shows a t-SNE dimen-
sionality reduction plot with points color-coded by triage category and shaped by dataset 
source. Surrounding the central plot are marginal distributions of key clinical variables 
displayed as violin plots with overlaid box plots. The visualization includes transparency 
effects to indicate data density and dashed decision boundaries from the classification 
model. Inset panels display the correlation matrix of principal variables and a parallel 
coordinates plot showing feature relationships across patient subgroups. 

 
Figure 4. Distribution of Patient Characteristics Across Training and Testing Datasets. 
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4.2. Evaluation Metrics and Validation Methods 
The performance evaluation framework utilized a multi-dimensional approach to as-

sess DeepTriage across technical, clinical, and operational domains. Table 7 defines the 
core metrics employed in the system evaluation, spanning classification accuracy, re-
source utilization efficiency, and temporal performance characteristics. 

Table 7. Performance Metrics Definition and Calculation Methods. 

Metric 
Category 

Specific Metric Definition Calculation Method Target 
Threshold 

Classificat
ion 

Performa
nce 

Triage Accuracy 
Correct severity 
assessment rate 

(TP + TN)/(TP + TN + 
FP + FN) >90% 

Over-triage Rate Rate of unnecessarily 
high classification 

FP/(FP + TN) <10% 

Under-triage 
Rate 

Rate of dangerously 
low classification FN/(FN + TP) <5% 

Resource 
Utilizatio

n 

Allocation 
Efficiency 

Resource utility per 
patient outcome 

Σ(patient 
benefit)/Σ(resource 

cost) 
>0.85 

Resource 
Saturation 

Peak resource 
utilization rate 

max(resource 
usage)/capacity 

<95% 

Temporal 
Performa

nce 

Decision Latency 
Time from data 

acquisition to decision 
Measured in 
milliseconds <200ms 

Adaptation Rate 
System response to 
changing conditions Δoptimal/Δactual >0.75 

The validation methodology employed k-fold cross-validation with stratified sam-
pling to maintain consistent class distributions across training and testing sets. Inspired 
by Zhang et al.'s innovative approach to automatic short math answer grading via in-
context meta-learning, we adopted a similar meta-learning framework to enhance the gen-
eralization capability of our triage classification validation [27]. Their work demonstrated 
how domain-specific knowledge can be encoded within meta-learning frameworks to en-
hance generalization capabilities, a principle we applied to our triage algorithm validation 
process (Table 8). 

Table 8. DeepTriage Performance Results Across Different Incident Scenarios. 

Scenario 
Type Scale 

Triage 
Accuracy (%) 

Under-triage 
Rate (%) 

Over-triage 
Rate (%) 

Resource 
Efficiency 

Latency 
(ms) 

Adaptation 
Rate 

Mass 
Shooting 

Small (<30) 94.3 2.1 7.8 0.91 124.3 0.85 
Medium (30-

100) 
93.1 2.7 8.3 0.88 138.7 0.82 

Large (>100) 90.5 3.6 9.2 0.84 156.2 0.79 

Building 
Collapse 

Small (<30) 92.7 2.8 8.1 0.89 131.5 0.84 
Medium (30-

100) 
91.4 3.2 8.7 0.86 145.8 0.81 

Large (>100) 89.3 4.1 9.5 0.82 162.4 0.77 

Natural 
Disaster 

Small (<30) 91.8 3.3 8.4 0.87 138.9 0.83 
Medium (30-

100) 
90.2 3.8 9.0 0.84 154.6 0.80 

Large (>100) 87.6 4.7 9.8 0.79 172.1 0.75 
This visualization presents a comprehensive analysis of system performance degra-

dation under increasing patient loads. The primary plot features multiple performance 
metrics tracked along the y-axis against increasing patient numbers on the x-axis, with 
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color-coded trend lines for each metric. Confidence intervals are represented as translu-
cent bands surrounding each trend line. The visualization incorporates critical threshold 
markers as horizontal dashed lines, with operational zones highlighted by background 
shading. Inset panels display heat maps of specific performance dimensions at key load 
points, while annotated vertical bands indicate capacity boundaries for different deploy-
ment configurations (Figure 5). 

 
Figure 5. Performance Degradation Analysis Under Increasing System Load. 

4.3. Comparative Analysis with Existing Systems 
DeepTriage performance was benchmarked against existing triage and resource al-

location systems currently deployed in emergency departments and disaster response set-
tings. Wang et al. developed advanced techniques for scientific formula retrieval using 
tree embeddings, which provided methodological insights for our approach to structured 
knowledge representation in medical decision support [28]. Their innovative embedding 
strategy for capturing hierarchical relationships informed our development of patient 
condition representations that preserve critical medical dependencies and symptom cor-
relations. Additionally, Zhang et al. contributed significant advances in mathematical op-
eration embeddings for solution analysis, which we adapted for modeling complex med-
ical decision pathways within our system [29]. Their work on embedding operations for 
open-ended solution analysis provided a framework for representing dynamic medical 
decision sequences that we incorporated into our triage optimization approach (Table 9). 

Table 9. Comparative Analysis with Existing Triage and Resource Allocation Systems. 

System Technology 
Base 

Triage 
Accuracy 

(%) 

Decision 
Time (s) 

Resource 
Utilization 
Efficiency 

Adaptabilit
y Score 

Implement
ation 

Complexity 

Interopera
bility 

START 
(Manual) 

Protocol-
based 

76.4 245.8 0.64 0.42 Low High 

ESI (Manual) 
Protocol-

based 
79.2 187.3 0.68 0.51 Low High 

SALT 
(Manual) 

Protocol-
based 

78.1 203.5 0.66 0.47 Low High 

EmergAI 
ML 

(supervised) 
84.5 42.7 0.73 0.61 Medium Medium 

TriageNet 
Neural 

network 
87.3 36.9 0.79 0.68 High Low 

DeepTriage Hybrid AI 92.6 14.8 0.87 0.82 High Medium 
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Zhang et al. developed temporal graph neural networks for complex pattern detec-
tion in cross-border transactions, which provided valuable architectural insights for our 
approach to modeling patient condition progression and resource allocation dependen-
cies [30]. Their work demonstrated the efficacy of temporal-aware neural network archi-
tectures for capturing evolving patterns in complex systems, a principle we applied to the 
dynamic nature of mass casualty incident management (Figure 6). 

 
Figure 6. Comparative System Performance Across Key Metrics. 

This visualization presents a multi-dimensional comparison of DeepTriage against 
existing triage systems. The primary component is a radar chart positioning each system 
along multiple performance axes, with DeepTriage's performance envelope highlighted 
against competitor baselines. Supplementary panels include a parallel coordinates plot 
showing individual system trajectories across performance dimensions, a grouped bar 
chart comparing specific metrics with statistical significance indicators, and a matrix of 
pairwise statistical comparisons. The lower section displays time-series plots of perfor-
mance stability under sustained operation for each system, with critical incident markers 
annotated along the timeline. 

5. Discussion and Future Directions 
5.1. Clinical Implications and Practical Deployment Considerations 

The DeepTriage system demonstrates significant potential for enhancing emergency 
response capabilities during mass casualty incidents through AI-driven decision support. 
Clinical implications extend beyond improved triage accuracy to encompass broader sys-
temic benefits, including reduced mortality rates, optimal resource utilization, and en-
hanced consistency in patient assessment across providers and facilities. Implementation 
in healthcare settings requires careful consideration of integration pathways with existing 
electronic health record systems and emergency management protocols. The deployment 
architecture supports both cloud-based and edge computing configurations, with the lat-
ter providing localized processing capabilities that enhance system resilience during in-
frastructure disruptions typical of disaster scenarios. Training requirements for medical 
personnel include system familiarization sessions, interpretation of AI recommendations, 
and appropriate override protocols when human judgment contradicts algorithmic sug-
gestions. Hardware specifications balance computational requirements with deployment 
practicality, utilizing accelerated inference capabilities on standard clinical computing in-
frastructure. The modular design facilitates incremental adoption, allowing healthcare fa-
cilities to implement specific components based on their operational needs and technical 
readiness. Real-world deployment would benefit from a phased approach, beginning 
with parallel operation alongside traditional triage systems before transitioning to pri-
mary decision support roles in non-critical scenarios, and ultimately to mission-critical 
applications during actual mass casualty events. 
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5.2. Limitations and Ethical Considerations 
The current DeepTriage implementation presents several technical limitations that 

warrant acknowledgment. The system performance degrades with increasing patient vol-
umes beyond its design specifications (e.g., over 100 simultaneous cases), potentially com-
promising decision quality during catastrophic events. Data quality issues, particularly 
missing or corrupted values from damaged monitoring equipment, can impact classifica-
tion accuracy despite robust imputation mechanisms. While the system incorporates at-
tention mechanisms to highlight decision factors, the interpretability of complex neural 
network components remains challenging for clinical personnel under time pressure. 
From an ethical perspective, the delegation of triage decisions to algorithmic systems 
raises fundamental questions regarding medical responsibility and authority. The imple-
mentation framework maintains human clinicians as the final decision authority, with AI 
recommendations serving in an advisory capacity rather than autonomous operation. Pri-
vacy protections must be balanced against information availability during crisis situations, 
requiring context-sensitive security protocols. The potential for algorithmic bias presents 
ongoing challenges, particularly when training data may underrepresent certain demo-
graphic groups or unusual presentation patterns. Medical ethics principles of beneficence, 
non-maleficence, autonomy, and justice must be systematically incorporated into system 
design and operational protocols. Deployment strategies must acknowledge the psycho-
logical impact on medical personnel, addressing potential algorithm aversion or over-re-
liance tendencies through comprehensive training programs. The technology introduces 
novel liability considerations regarding adverse outcomes resulting from AI-influenced 
decisions, necessitating clear legal frameworks before widespread implementation. 
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