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Abstract: The application of code intelligent search technology is gradually becoming a key means 
to solve the bottleneck of development efficiency in the context of the continuous expansion of soft-
ware development project scale and the increasing demand for code reuse. This study explores the 
core applications of deep learning in code search, focusing on semantic representation techniques 
for code, enhanced semantic matching using Transformer architectures, the use of graph neural net-
works for code structure parsing, the application of contrastive learning strategies for semantic cor-
relation mining, and the performance of multimodal fusion models in integrating code with natural 
language descriptions. An innovative intelligent code search system has been developed for system 
architecture scenarios. It includes the refinement of deep neural network models, the design of re-
trieval processes based on a dual-tower architecture, and strategies for resource allocation and tech-
nology selection during model deployment. Through research, significant progress has been re-
vealed in the complex semantic integration and efficient search of deep learning in code search, 
opening up new research directions for the development of intelligent code search systems. 
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1. Introduction 
In the process of software development, as software scale and logical complexity 

continue to increase, programmers need to quickly locate and reuse code snippets. The 
conventional code search method relies on simple correspondence of keywords, which 
has shortcomings in grasping the deep meaning of the code and the search results are not 
accurate enough. Thanks to the rapid advancement of deep learning technology, the in-
telligent upgrade of code search has ushered in a new opportunity. Deep learning can 
extract the semantic and structural features of code from large datasets, offering robust 
theoretical foundations and technical support for developing intelligent code search sys-
tems. This article is based on the basic principles of deep learning, and conducts in-depth 
research on the core technology of code intelligent search. It proposes an efficient and 
scalable intelligent code search solution in model optimization and system architecture 
design. This research achievement has opened up new directions for the development of 
code search technology and improved the search intelligence experience for developers. 

2. Basic Theories of Deep Learning 
Deep learning technology is an advanced machine learning method based on artifi-

cial neural networks, which simulates the way the human brain processes information [1]. 
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The core concept is to use multi-level neural networks to abstract and train information 
layer by layer, thereby automatically modeling and reasoning complex information. Com-
pared to traditional machine learning methods, deep learning has superior representation 
capabilities and can extract advanced features from large amounts of data, especially 
when dealing with unstructured data such as images, audio, and text, demonstrating its 
unique superiority. The theoretical pillars of deep learning involve backpropagation, gra-
dient descent, and the use of nonlinear activation functions. By solving the derivative of 
the loss function with respect to the network weights, the backpropagation method can 
automatically adjust various parameters of the model. The introduction of non-linear ac-
tivation functions endows neural networks with the ability to simulate complex functions. 
Thanks to its massive computing power and datasets, deep learning has rapidly devel-
oped, promoting the widespread application of convolutional neural networks, recurrent 
neural networks, and self attention structures (i.e. Transformers). 

3. Key Technologies of Deep Learning in Code Search 
3.1. Code Semantic Representation 

Deep learning techniques are crucial for semantic representation of code in code 
search. This method converts programming code into corresponding semantic vectors, 
enabling deep networks to more accurately grasp the intrinsic connections between codes, 
thereby improving the intelligence level of search. Common code semantic representation 
techniques include vocabulary embedding techniques, syntax tree embedding techniques, 
and graph neural network embedding techniques. For example, in an experiment con-
ducted on the CodeSearchNet dataset, Python code snippets were selected and a BERT 
pre trained model was used to generate vector representations of the code. These repre-
sentations were compared with the vector of the query statement for cosine similarity to 
find similar code snippets. Table 1 shows the Top-1 accuracy and average search time 
achieved by different characterization techniques on the test set [2]. 

Table 1. Data Analysis Table. 

Embedding method Top-1 accuracy (%) Average search time (ms) 
Word embedding 68.5 10.2 

Grammar tree embedding 73.2 12.5 
Image embedding 78.6 15.7 
Pre trained model 82.1 9.8 

Based on semantic representation through code embeddings, this method calculates 
the similarity between a code fragment 𝑐𝑐𝑖𝑖 and a query �⃗�𝑞 using the following formula: 

Sim(𝑐𝑐𝑖𝑖,q) = 𝑐𝑐𝑖𝑖⋅𝑞𝑞�⃗
||𝑐𝑐𝑖𝑖|| ||𝑞𝑞�⃗ ||

           (1) 

In formula (1), 𝑐𝑐𝑖𝑖 and q are the embedding vectors of the code snippet and query text, 
respectively, generated by a deep learning model ‖∙‖ representing the norm of a vector, 
⋅ represents the dot product of the vector. The compatibility evaluation tool between this 
code snippet and the query statement. Research shows that adopting CodeBERT to im-
plement vector embedding processing for code improves the accuracy of code search, ac-
celerates search speed, and provides strong technical support for intelligent code search. 

3.2. Semantic Matching Based on Transformer 
In the field of intelligent code search, transformer architecture plays a crucial role, 

with its unique multi attention head design effectively grasping the deep semantic con-
nections between code and query statements [3]. Based on the code semantic correspond-
ence technology of Transformer, the code and natural language queries are transformed 
into embedded vectors, and then deep neural networks are used to match and analyze 
these vectors, achieving precise search results. In the testing phase, the CodeSearchNet 
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dataset was selected, and the CodeBERT, based on the Transformer architecture, was used 
to encode the code and queries into a unified representation. After model training, it is 
possible to estimate the semantic similarity between code snippets and query statements. 
We compared the performance differences of different models in terms of Top-1 accuracy 
and average search time through data tables (Table 2). 

Table 2. Performance Comparison of Different Models. 

Model Top-1 accuracy (%) Average matching time (ms) 
BiLSTM 69.3 11.5 

CNN 74.1 9.8 
Transformer 82.5 8.7 
CodeBERT 86.8 7.2 
The semantic matching calculation formula based on Transformer is as follows: 

Sim(c,q)=softmax(𝑄𝑄𝐾𝐾
𝛵𝛵

�𝑑𝑑𝑘𝑘
)           (2) 

In formula (2), 𝑄𝑄 = 𝑊𝑊𝑞𝑞 ⋅ 𝑋𝑋𝑞𝑞  is the query matrix of the query text, 𝐾𝐾 = 𝑊𝑊𝑘𝑘 ⋅ 𝑋𝑋𝑐𝑐 is the 
key matrix of the code fragment, 𝑑𝑑𝑘𝑘  is the dimension of the attention vector, and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
generates the score results of embedded matching by applying normalization strategy to 
the similarity distribution model and combining weighted accumulation method. Analy-
sis of the table data and application of relevant formulas show that CodeBERT's Trans-
former architecture and multi-head attention mechanism significantly improve the accu-
racy of semantic matching and reduce matching time. These results demonstrate 
CodeBERT's effectiveness as an advanced technical solution for intelligent code search. 

3.3. Application of Graph Neural Networks in Code Structure Analysis 
Graph neural networks in intelligent code search primarily focus on analyzing the 

internal structure of code. The code syntax is complex and the semantic structure is also 
quite rich, such as abstract syntax trees, program control flowcharts, and data flow dia-
grams, all of which can be represented in the form of graphs. Graph neural networks can 
extract the overall and detailed features of code by transmitting and summarizing node 
information in the graph structure. In practical applications, Java code snippets are se-
lected as datasets and transformed into abstract syntax tree forms. Graph neural networks 
are used to create structured embeddings rich in semantic information. The search perfor-
mance of the code is evaluated by comparing the structured embeddings with the corre-
sponding query statements. Table 3 shows the comparison data of different models in 
terms of accuracy and processing efficiency. 

Table 3. Comparison of Different Models. 

Model Top-1 accuracy (%) Average processing time (ms) 
BiLSTM(Sequence Model) 70.2 15.6 

CNN(Plane structure model) 75.8 12.3 
Basic GNN (GCN) 80.5 9.7 

Graph Attention Network (GAT) 84.6 8.9 
The basic propagation formula of GNN is: 

ℎ𝑣𝑣（𝑘𝑘+1） = 𝜎𝜎 �𝑊𝑊𝑘𝑘 ⋅ 𝐴𝐴𝐴𝐴𝐴𝐴 ��ℎ𝑢𝑢
(𝑘𝑘):𝑢𝑢 ∈ Ν(𝑣𝑣)��� + 𝑏𝑏(𝑘𝑘)      (3) 

In formula (3), ℎ𝑣𝑣𝑘𝑘=1 is the embedding vector of node 𝑣𝑣 at the k+1th layer; 𝑁𝑁(𝑣𝑣) rep-
resents the set of neighbors of node 𝑣𝑣; 𝐴𝐴𝐴𝐴𝐴𝐴 is an aggregation function, such as summa-
tion or averaging; 𝑊𝑊(𝑘𝑘)  and 𝑏𝑏(𝑘𝑘)  are weight matrices and biases; 𝜎𝜎  is the activation 
function. Combining graph attention mechanism (GAT), the aggregation function can be 
further improved as follows: 
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AGG= ∑ 𝛼𝛼vu ⋅ ℎ𝑢𝑢
(𝑘𝑘)

𝑢𝑢∈𝑁𝑁(𝑣𝑣) ,𝛼𝛼vu = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒vu)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒vj)𝑗𝑗∈𝑁𝑁(𝑣𝑣)

, 𝑒𝑒vu = 𝑠𝑠𝑇𝑇[𝑊𝑊 ⋅ ℎ𝑣𝑣||𝑊𝑊 ⋅ ℎ𝑢𝑢]   (4) 

In formula (4), 𝛼𝛼vu refers to the weight assigned to the attention level of node v to-
wards its neighboring node u. Graph neural networks effectively extract structural fea-
tures of code, improving both semantic matching accuracy and processing speed. This 
plays an indispensable role in the field of intelligent code search. 

3.4. Comparative Learning 
Contrastive learning, as an unsupervised or semi-supervised learning method, cap-

tures the semantic structure of the embedding space by comparing differences between 
samples, enhancing the model's understanding of the semantic associations between code 
and queries. In the field of intelligent code search, this method optimizes the semantic 
vector distribution of the embedding space by establishing positive and negative sample 
sets, minimizing the distance between similar samples while maximizing the distance be-
tween dissimilar ones (Table 4) [4]. 

Table 4. Data Comparison and Analysis Table. 

Method 
Positive sam-
ple similarity 

Negative sam-
ple similarity 

Tightness of em-
bedding space 

Time com-
plexity 

Euclidean distance com-
parison 

0.82 0.35 medium O (N2) 

Cosine distance com-
parison 

0.89 0.29 tall O (N2) 

Weighted cosine com-
parison 

0.92 0.25 higher O (N2) 

Self supervised contras-
tive learning method 

0.94 0.21 highest O (N) 

The optimized contrastive learning strategy has achieved significant results in nar-
rowing the distance between similar samples, effectively rejecting heterogeneous samples, 
improving the accuracy of semantic matching, and providing solid support for the core 
part of code search technology. 

3.5. Multimodal Joint Modeling 
The modeling method that integrates multimodal information plays a key role in the 

field of code intelligent search, integrating different forms of code representation such as 
textual description, internal structure, and dynamic behavior. Deep neural networks are 
used to integrate and jointly represent these heterogeneous data, enhancing the accuracy 
and robustness of code search. In this type of modeling technique, text patterns generally 
cover textual descriptions or annotations of code parts, structural patterns involve abstract 
syntax structures or control flowcharts of code, and behavioral patterns describe the func-
tional properties or execution performance of code. By extracting effective features from 
multidimensional data and applying deep integration techniques, the semantic features 
of the code can be more comprehensively revealed. The following Table 5 shows the per-
formance comparison between single mode and multi-mode modeling. 

Table 5. Data Comparison and Analysis Table. 

Model type Unimodal 
Multimodal (text + 

structure) 
Multimodal (text + structure + 

behavior) 
Top-1 Accuracy (%) 73.4 85.2 90.6 
Model complexity Low In the middle high 

Data demand quantity Low In the middle high 
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Generalization ability 
In the 

middle 
high highest 

The joint construction strategy that integrates multiple modalities enables deeper 
multimodal integration, improving semantic expressiveness and search accuracy in code 
retrieval tasks, improved the ability to express code semantics and search accuracy, and 
provided solid technical support for intelligent code search technology. 

4. Design of Code Intelligent Search System Based on Deep Learning 
4.1. Training and Optimization of Deep Learning Models 

In building an intelligent code search system, the training of deep learning models is 
the core. This system adopts the Transformer framework and has undergone deep cus-
tomization of the model based on the syntax characteristics of the programming language 
[5]. The dataset used is collected from numerous open-source code repositories, covering 
code examples from mainstream programming languages such as Python, Java, C++, and 
more. In order to improve the model's grasp of code meaning, structured code annotation 
data was utilized, and a series of data augmentation techniques were implemented, such 
as extracting code annotations and replacing variable names. During the optimization 
phase of the model, methods such as learning rate adjustment and gradient pruning were 
employed to maintain robustness when training on large amounts of data. The loss func-
tion design of the system adopts weighted cross entropy that integrates code semantic 
distance to optimize model performance. The formula is as follows: 

𝐿𝐿 = − 1
𝑁𝑁
∑ 𝑤𝑤𝑖𝑖 ⋅ 𝑙𝑙𝑠𝑠𝑙𝑙(𝑝𝑝𝑖𝑖) + 𝜆𝜆 ⋅ 𝑑𝑑(𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑖𝑖)𝑖𝑖=1         (5) 

In formula (5), 𝑤𝑤𝑖𝑖  represents the weight factor, 𝑝𝑝𝑖𝑖  represents the prediction proba-
bility of the i-th sample, 𝑑𝑑(𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑖𝑖) refers to the semantic gap between codes, and λ is the 
adjustment factor. The following Table 6 shows the comparison of model performance for 
various training parameter settings: 

Table 6. Model Performance Comparison Table. 

Parameter configura-
tion 

Learning 
rate 

Batch size 
Model accu-
racy (Top-1) 

Model accu-
racy (Top-5) 

magnitude of 
the loss 

Configuration A 1e-4 32 85.4% 96.3% 0.234 
Configuration B (Op-
timize learning rate) 

5e-5 32 87.6% 97.1% 0.198 

Configuration C (In-
crease batch size) 

5e-5 64 88.3% 97.5% 0.175 

Configuration D 
(Comprehensive op-

timization) 
3e-5 64 89.5% 98.1% 0.150 

After comprehensive optimization, the configuration (Configuration D) has shown 
significant progress in numerous evaluation criteria, which leads to higher search accu-
racy and deeper semantic understanding to the code intelligent search system. 

4.2. Search Process and Model Design 
The design of the search mechanism for the code intelligent search system for deep 

learning should focus on the following key steps: input processing of user queries, extrac-
tion of feature vectors, application of deep neural network matching models, and output 
of final results. At the beginning, this process will convert the code snippets or natural 
language descriptions entered by the user into corresponding vector representations. Sub-
sequently, a deep learning model is used to compare and analyze the semantic vectors of 
various code fragments in the code repository, identifying the code fragments most se-
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mantically correlated with the user query. In this process, a dual tower network architec-
ture with Transformer as the core was selected, which can map user input and code frag-
ments to the feature space respectively, and use a common or exclusive weight system to 
evaluate similarity. The core formula is as follows: 

𝑆𝑆(u,c) = ∑ 𝑤𝑤𝑖𝑖⋅(𝑓𝑓𝑢𝑢(𝑒𝑒𝑖𝑖)⋅𝑓𝑓𝑐𝑐(𝑦𝑦𝑖𝑖))𝑛𝑛
𝑖𝑖=1

�∑ 𝑓𝑓𝑢𝑢(𝑒𝑒𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1 ⋅�∑ 𝑓𝑓𝑐𝑐(𝑦𝑦𝑖𝑖)2

𝑛𝑛
𝑖𝑖=1

         (6) 

In formula (6), 𝑆𝑆(u, c) represents the semantic similarity between user input u and 
code snippet c, 𝑠𝑠𝑢𝑢(𝑠𝑠𝑖𝑖) and 𝑠𝑠𝑐𝑐(𝑦𝑦𝑖𝑖) are personalized feature mapping operations, and 𝑤𝑤𝑖𝑖  
represents the weight coefficients corresponding to each feature. In order to explore the 
performance advantages and disadvantages of various models in semantic matching, this 
study compared correlation scores and computational efficiency (Table 7) [6]. 

Table 7. Comparison Results. 

Model types 
Average correla-

tion score 
Query time 

(ms) 
Model parameter 

quantity (M) 
Traditional model based on 

TF-IDF 
0.62 45  —  

Matching model Based on 
Word2Vec 

0.73 56 12 

Twin tower model based on 
Transformer 

0.89 34 24 

The data shows that the twin tower model using Transformer architecture has im-
proved both relevance rating and query efficiency, and its optimization effect is more 
prominent in handling large code repository scenarios. 

4.3. Model Deployment Environment and Technology Selection 
In the process of implementing a deep learning based code intelligent search system, 

it is necessary to comprehensively measure the computational complexity, hardware re-
source requirements, and response speed requirements of the model, and find the optimal 
balance between performance and cost [7]. When selecting deployment scenarios, cloud 
architectures capable of handling high concurrency and providing low latency should be 
prioritized, and containerization technology should be utilized to ensure flexible scalabil-
ity and continuous stable operation of the system. In terms of selecting technical solutions, 
it is recommended to use efficient computing support frameworks (such as TensorFlow 
Serving or TorchServe) to deploy model services, using message brokers (e.g., Kafka) and 
searchable storage engines (e.g., Elasticsearch) to work together to achieve effective pro-
cessing and flow of data. The core resource allocation formula is as follows: 

𝑅𝑅(𝑠𝑠) = 𝜆𝜆
𝜇𝜇

+ 𝛽𝛽 ⋅ 𝜎𝜎2            (7) 

In formula (7), 𝑅𝑅(𝑠𝑠) represents the resource consumption per unit time, 𝜆𝜆 and μ 
represent the request arrival rate and processing rate, 𝛽𝛽 is the concurrency factor, and 𝜎𝜎2 
represents the variance of the request load. The formula is used to dynamically adjust the 
number of model instances to ensure stable system performance (Table 8). 

Table 8. Comparison Data of Different Deployment Schemes. 

Deployment plan 
Average response 

time (ms) 
Throughput (re-
quests/second) 

Cost (monthly aver-
age, USD) 

Single machine deploy-
ment 

230 150 500 

Cloud deployment (GPU 
optimization) 

95 500 1200 
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Distributed deployment 
(containerization) 

60 1200 1600 

Statistical analysis indicates that integrating distributed architecture with container-
ization significantly reduces response latency and enhances overall system throughput 
can enhance the processing capability of the system while compressing response speed to 
the extreme, thereby making it an optimal solution for supporting large-scale and high-
frequency code search operations. With the scalability of distributed systems, this archi-
tecture can flexibly respond to changing and complex query requirements as well as load 
fluctuations. 

5. Conclusion 
This study explores code intelligent search technology that integrates deep learning 

techniques. Based on a detailed analysis of the core technologies of semantic expression, 
matching mechanism, structural parsing, and multimodal integration of code, an efficient 
code search system architecture has been constructed. The paper also explains the training 
strategy, model optimization techniques, and deployment methods in detail. Compared 
to traditional baseline methods, the system demonstrates significant improvements in 
both semantic search accuracy and operational efficiency, successfully overcoming the 
challenges encountered in semantic parsing and multimodal information fusion during 
code search. The continuous evolution of deep learning technology, combined with auto-
mated tool processes and cloud computing resources, is expected to bring a broader hori-
zon for the widespread application of intelligent code search. Research has provided de-
velopers with more advanced search tools and opened up new avenues for the practical 
application of deep learning in the field of software development. 
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