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Abstract: Within the internet advertising landscape, the intricate interplay between user exposure,
clicks, and conversions often eludes precise measurement. Conventional analytical methods
typically capture only superficial causal relationships, failing to accurately depict advertising
effectiveness. This paper employs Bayesian causal modelling to construct a framework for
identifying and predicting advertising conversions, probabilistically characterising influencing
factors at each stage. By decomposing evaluations of diverse advertising pathways using predefined
antecedents and consequents, the primary pathway is identified. Experimental results demonstrate
that this method enables stable inference under incomplete information, provides more rational
support for advertising optimisation, and offers a fresh perspective for exploring causal
relationships in digital markets.
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1. Introduction

Against the backdrop of fully developed digital marketing technologies, enterprises
increasingly prioritise the authenticity of outcomes generated by their advertising
campaigns. However, due to the presence of various influencing factors, it remains
challenging to determine "whether advertising is effective" using traditional statistical
methods. Beneath the seemingly straightforward relationship between ad exposure, clicks,
and conversions lie intricate causal networks. This paper employs Bayesian causal models
to analyse the causal networks underpinning advertising conversions within existing
information and data constraints. It seeks to achieve a balance between interpretability
and predictive power while proposing a novel research approach for evaluating
advertising effectiveness [1].

2. Causal Identification Logic and Research Framework for Advertising Conversion
Pathways

2.1. Structural and Causal Characteristics of Advertising Conversion Pathways

The advertising conversion process typically encompasses three primary stages:
exposure, click-through, and conversion. Users encounter advertisements while browsing
information feeds; some individuals develop interest and click, ultimately completing a
purchase or registration. This process is influenced by factors including ad content,
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placement, audience characteristics, and external environments, with complex causal
dependencies existing between variables [2]. Traditional analyses often rely on
correlation-based judgements, which may mistakenly interpret "increased click-through
rates alongside rising conversion rates" as causation, while overlooking potential
confounding factors such as users' inherent purchasing propensity, price discounts, and
temporal differences. The core of causal identification lies in distinguishing between
"advertisements causing conversions" and "advertisements merely coinciding with
conversions," thereby establishing structural models that reflect genuine effects.
Bayesian causal inference methods utilise probabilistic graphical models. By
constructing directed edges between variables, they explicitly define causal directions and
adjust parameters through posterior mechanisms during data updates. To reveal the
causal pathways and interactions across advertising stages, a Bayesian causal inference
framework for advertising conversion paths can be established, as illustrated in Figure 1.
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Figure 1. Overall Framework Diagram for Bayesian Causal Identification of Advertising Conversion
Pathways.

Nodes represent primary variables (impressions A, clicks C, conversions Y, user
characteristics X), while arrows denote causal directionality. User characteristics influence
ad impressions, clicks, and conversions respectively. Ad impressions exert an indirect
effect on conversions via clicks, whilst also possessing a direct influence pathway. This
framework maintains inferential robustness under conditions of limited samples or
incomplete information, proving applicable for multi-channel advertising effectiveness
analysis and path contribution assessment [3].

2.2. Key Paradoxes and Conversion Logic in Advertising Causality Identification

The primary challenge in advertising causality analysis lies in the counterfactual
dilemma. Actual data only records whether users who saw an advertisement converted,
without simultaneously observing whether they would have converted without exposure.
This missing control information makes direct causal identification difficult. Furthermore,
ad exposure often co-varies with external factors such as user interest, marketing activities,
or promotional timing, creating confounding effects. Without proper control, model
estimates are prone to bias, leading to erroneous causal inferences [4].

Causal structure models, through hierarchical descriptions of variable relationships,
can clearly distinguish direct from indirect pathways, thereby identifying the true
contribution of each element in the conversion process. Bayesian methods incorporate
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uncertainty probabilistically into the inference process. By jointly updating prior
distributions with sample information, they progressively approximate the true effect of
advertising behaviour. This approach not only measures the overall impact of advertising
but also reveals the transmission mechanisms of effects across different pathways,
providing a basis for advertising optimization [5].

2.3. Overall Conceptual Framework of Bayesian Causal Identification

The causal effects of advertising conversion can be probabilistically characterised
within a Bayesian inference framework. Let advertising exposure denote A, conversion
outcome denote Y, and control variables denote X. Under intervention conditions, the
conversion probability can be expressed as:

P(Y|do(4)) = Xx P(Y|A,X) P(X) )

Here, P(Y|do(A)) denotes the conversion probability when exposed to the
intervention advertisement, while P(Y|A,X) represents the probability under observed
conditions. This expression employs the total probability decomposition to eliminate
confounding variables, thereby yielding an estimate of the advertisement's net effect.

The core of Bayesian inference lies in expressing parameters as distributions, where
models continuously update their posterior distributions with incoming data, enabling
robust inference even under conditions of high noise or insufficient samples. This
framework not only estimates effect sizes but also reveals causal directions and strength
between variables, providing quantitative grounds for advertising resource allocation and
strategy evaluation. By introducing hierarchical structures, it enables layered analysis of
different ad types and audience segments, thereby enhancing the model's adaptability
and interpretability across diverse deployment scenarios [6].

3. Bayesian Causal Modelling Approach and Inference Mechanism
3.1. Model Structure and Variable Definition

Advertising conversion behaviour may be conceptualised as a multi-layered causal
system, typically comprising three stages: "advertisement exposure - user click - outcome
conversion”. To elucidate the causal relationships between these stages, the conversion
probability can be represented as a function of advertisement exposure and user
characteristics:

P(Y|A,X) =logit~'(yo + 14 +v.X) 2)

Here, P(YIA,X) denotes the probability of conversion occurring given ad exposure
and user characteristics; logit-1(.) represents the inverse of the logit function; A denotes
the ad exposure status (1 for exposed, 0 for unexposed); Y represents the conversion
outcome (1 for converted, 0 for not converted); X is the set of user characteristic variables;
Yo is the constant term, y; is the effect coefficient for ad exposure, and vy- is the coefficient
vector for control variables. This model characterises the direct effect of ad exposure on
conversion, forming the foundation for subsequent path decomposition and Bayesian
inference [7].

The model's logical structure comprises three tiers: the input layer reflects external
placements and audience characteristics; the intermediate layer captures user interaction
responses; and the output layer corresponds to final conversion outcomes. To facilitate
subsequent model expansion and variable stratification, Table 1 summarises the
hierarchical structure of the model.

Table 1. Hierarchical Structure of the Model.

Level Main Content Example Variables Function Description
Advertising andExposure volume, displayDescribe ad reach and
Input Layer . . . .
audience features frequency, user profiles, etc.audience differences
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Reflect the immediate

Middle User interactionClicks, browsing depth, .
. i response triggered by the
Layer behavior dwell time, etc. d
a
) ) Measure  the  actual
Output . Purchases,  registrations, .
Conversion results effectiveness  of  the

Layer inquiries, etc. .
advertisement

This structure clearly delineates the hierarchical levels and functional positions of
variables within the advertising conversion process, providing a standardised variable
framework for Bayesian causal modelling while laying the groundwork for subsequent
prior specification and effect identification.

3.2. Prior Distribution and Posterior Update

Bayesian methods achieve dynamic parameter updates and uncertainty
characterisation by integrating prior information with sample data. Prior distributions
reflect pre-observation knowledge about parameters, whilst posterior distributions
embody how data evidence modifies this knowledge; together they determine the model's
estimation outcomes.

Let the model parameter set be ®\ Theta® and the observed data be DDD. According
to Bayes' theorem:

_ p(Dle)p(e)
p(01D) = K2 3)

Here, p(®ID) denotes the posterior distribution, representing the updated parameter
values conditional upon the data D; p(D|®) is the likelihood function, characterising the
extent to which the data supports the parameters; p(®) constitutes the prior distribution,
embodying empirical knowledge; and p(D) serves as the normalising constant. This
relationship indicates that parameter estimation constitutes a probabilistic outcome
achieved through balancing empirical data with subjective cognition.

In advertising conversion modelling, probability parameters such as conversion rates
are often set with a Beta distribution prior, which flexibly captures the prior uncertainty
of successful events. Regression coefficients typically employ a normal distribution prior,
reflecting the characteristic that parameters centre around zero while permitting deviation.
When strong information is lacking, weak prior information may be selected to ensure
estimation stability.

The posterior distribution is typically obtained through Markov Chain Monte Carlo
(MCMC) sampling. This method maintains robustness even with limited samples or high
noise levels, and can output confidence intervals and uncertainty ranges for parameters.
The distribution settings for key parameters are shown in Table 2.

Table 2. Parameter Distribution Type Settings.

. Applicable L.
Parameter Type Distribution Form Description
Range
Conversion ) '
. R ) Represents the prior uncertainty
probability Beta distribution ~ 0-1 interval -
of event probability
parameter
Regression
. . Real numberControls the central tendency of
coefficient Normal distribution )
interval variables or exposure effects
parameter
Variance Gamma Positive numberDescribes the intensity of noise or
parameter distribution interval fluctuation
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This mechanism provides the core basis for parameter updating in Bayesian causal
models, enabling the model to maintain stable and adaptive estimation capabilities under
varying sample conditions.

3.3. Path Contribution Identification and Causal Effect Decomposition

The overall effectiveness of advertising campaigns arises from the combined action
of multiple causal pathways. To identify the contribution of each pathway, the total effect
can be decomposed into direct and indirect effects. The direct effect reflects the
independent influence of ad exposure on conversion, while the indirect effect represents
the influence generated indirectly through mediating variables such as clicks. This
decomposition reveals the true role of advertising at different stages of the
communication process.

The total advertising effect can be expressed as:

TE = DE + IE (4)

TE denotes the total effect, DE represents the direct effect, indicating the independent
influence of ad exposure on conversion; IE signifies the indirect effect, reflecting the
indirect impact of advertising on conversion via mediating variables. This decomposition
enables assessment of the contribution strength across different pathways, providing
quantitative grounds for advertising optimisation.

Within advertising conversion scenarios, the indirect effect may be further expressed
as:

IE = EX[P(Y|A = 1,C,X)] — EX[P(Y]A = 0,C, X)] (5)

Here, EX][.] denotes the expected value on the user feature variable X; A represents
the ad exposure status; C denotes the click behaviour; and Y signifies the conversion
outcome. This expression reflects the average impact of ad exposure on conversion rate
changes via the click path, after controlling for user features. A higher IE value indicates
that the click path plays a dominant role in ad conversions; conversely, a lower value
suggests that direct exposure contributes more significantly to conversions.

The effect values following path decomposition can be calculated from posterior
samples and output as means, confidence intervals, or standardised metrics. By
comparing effects across different paths, high-value links can be identified, providing
quantitative grounds for advertising budget allocation and channel evaluation.
Simultaneously, these decomposition results serve as a crucial component in model
interpretability validation, ensuring consistency between causal structure assumptions
and actual data performance.

3.4. Model Convergence and Uncertainty Assessment

The reliability of Bayesian models primarily manifests in the convergence of
parameter posterior distributions and the stability of estimates. Model parameters are
typically obtained via Markov chain Monte Carlo sampling; should the sampling chain
fail to reach a steady state, inferential results may exhibit bias. To assess the consistency
of sampling chains, the Gelman-Rubin criterion may be employed, calculated as follows:

R=|Z 6)

Among these, R denotes the multi-chain convergence statistic, 114 represents the
inter-chain variance, and W signifies the intra-chain variance. When ¥V approaches 1, it
indicates stable sampling results; if exceeding 1.1, extending iterations or adjusting initial
values is required to enhance convergence.

Following model convergence, parameter uncertainty should be further assessed.
The posterior distribution provides confidence intervals and variance information for
parameters, enabling evaluation of estimation robustness. Narrow intervals that do not
cross zero indicate significant effects with clear directionality; broad intervals or unstable
signs suggest residual model variability, necessitating increased samples or optimised
priors to enhance precision. Overall model performance may also be assessed by
combining prediction error and goodness-of-fit metrics, commonly including root mean
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square error (RMSE), coefficient of determination (R?), and Deviance Information
Criterion (DIC). A lower RMSE indicates reduced error, a higher R? signifies greater
explanatory power, and a smaller DIC reflects a more favourable balance between model
precision and complexity. By subjecting Bayesian causal models to dual tests of
convergence and uncertainty, the robustness and reliability of their estimation results can
be assured.

4. Extensions and Application Value of Bayesian Causal Models
4.1. Hierarchical Extension of Model Structure

Bayesian causal models demonstrate excellent scalability in advertising conversion
analysis. To accommodate variations in ad types, channels, and audience characteristics,
the foundational model may be structured hierarchically. This approach maintains a
balance between overall trends and individual features. By introducing upper-level
distributions, the hierarchical structure facilitates information sharing at the aggregate
level while preserving local diversity, thereby enhancing estimation stability. Its
structural form is as follows:

Y1 ~N (.pra;ﬂ) @)

Here, y1i denotes the exposure effect parameter for the i-th category of advertising
samples, N represents a normal distribution, uy: signifies the population mean, and ¢
indicates the variance. This structure enables the model to share information across
different advertising channels while preserving individual differences, making it suitable
for advertising effectiveness modelling in multi-source data environments. The
hierarchical Bayesian approach not only enhances estimation accuracy but also integrates
cross-platform data to achieve unified inference of campaign performance.

4.2. Adaptive Extensions of Inference Methods

Given the vast volume of advertising data and complex variables, traditional MCMC
methods face limitations in computational efficiency and convergence. Variational Bayes
(VB) or Hybrid Monte Carlo (HMC) techniques can be employed to estimate high-
dimensional parameters. Variational inference methods represent the posterior
probability density as a series of easily manageable forms, utilising optimisation
algorithms to approximate it. This reduces computational costs while yielding
approximate results. In contrast, HMC employs gradient information to leap through
parameter space, maintaining high-quality sampling under complex conditions. These
approaches can be freely selected and applied across varying scales and patterns. In
designing advertising conversion workflows, hybrid approaches are typically employed
to balance precision and efficiency. Variational methods first provide preliminary
estimates, followed by optimisation of key parameter posterior densities via MCMC. This
conserves computational time while ensuring model output consistency and determinism.

4.3. Interpretation and Visualisation of Causal Effects

Bayesian causal models not only enhance computational precision but also improve
data interpretability through graphical representations. The posterior distributions
inferred by the model can be transformed into confidence interval plots, path strength
maps, and marginal effect curves to elucidate the magnitude of effects across various
advertising stages. Confidence interval plots clarify parameter estimation uncertainty
while demonstrating the significance and robustness of advertising effects; path strength
plots illustrate the influence and relative impact of each factor; marginal effect curves
describe the non-linear relationships between advertising exposure, click-through rates,
and conversions. The benefit of visualisation lies in aiding senior management's
comprehension of the model inference process, enabling enterprises to make informed
decisions in practical operations. Concurrently, causal decomposition results can be
integrated into practical marketing strategies to identify high-value customer segments or
critical pathway points. By mapping model outputs to advertising budgets and exposure
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frequencies, enterprises can quantitatively measure the marginal benefits of different
channels, achieving optimal allocation of advertising resources. Such applications hold
significant potential for expansion in digital marketing, recommendation system
optimisation, and user retention analysis.

4.4. Demonstrating the Model’s Value in Advertising Scenarios

The Bayesian causal model exhibits robustness and efficacy when applied to
advertising. By pre-setting constraints, it addresses issues of imbalanced training data and
funnel leakage in advertising, mitigating the impact of anomalous samples on results
while preserving overall trends. Combined with post-update methods to adjust parameter
values for new advertising data, it enables real-time monitoring and dynamic
management of advertising conversion rates. This methodology optimises multi-tiered
advertising strategies: for brand marketing, it distinguishes marginal conversion impacts
across exposure frequencies and identifies optimal exposure thresholds; for performance
advertising, it compares causal effects across channels to guide budget allocation
decisions; in remarketing scenarios, it predicts repeat purchase probabilities for different
customers and informs personalised touchpoint strategies.

Overall, the Bayesian causal model combines probabilistic inference with hierarchical
structures, balancing robustness and flexibility to provide a quantifiable, interpretable
toolkit for advertising decision-making. Its application extends beyond ad effectiveness
evaluation to audience segmentation, pricing optimisation, and media mix analysis,
offering robust support for scientific and refined digital marketing management.

5. Conclusion

Bayesian causal modelling provides a theoretical foundation for constructing
advertising efficacy pathways. This approach utilises prior information and posterior
update processes to estimate how advertising effectiveness evolves over time under
unknown conditions, revealing the true relationships between exposure, clicks, and
conversions. It achieves superior predictive performance and interpretability in big data
scenarios characterised by small samples, diverse samples, and high noise. Furthermore,
hierarchical modelling and variable inference techniques enable the model to strike a
balance between computability and accuracy. The Bayesian causal modelling investigated
herein can further enhance the scientific rigour of advertising efficacy evaluation and
serve as a reference for optimising advertising deployment strategies. Future research
may integrate multi-source data with real-time feedback mechanisms to construct
adaptive causal learning systems, thereby enabling continuous optimisation of
advertising decisions and data-driven intelligent evolution.
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