

Review **Open Access**

Research on the Application Potential of Flexible Photovoltaic Materials in Building Integration

Juanjuan Cui ^{1,*}

Received: 30 October 2025

Revised: 12 December 2025

Accepted: 24 December 2025

Published: 31 December 2025

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

¹ Harmony Fab (Jiangsu) Solar Tech. Co., Ltd., Nantong, Jiangsu, China

* Correspondence: Juanjuan Cui, Harmony Fab (Jiangsu) Solar Tech. Co., Ltd., Nantong, Jiangsu, China

Abstract: Flexible photovoltaic (FPV) materials have emerged as a promising solution for building-integrated photovoltaics (BIPV), offering unique advantages such as lightweight design, mechanical flexibility, and aesthetic adaptability. This review summarizes the current state of FPV technologies—including thin-film silicon, CIGS, CdTe, organic photovoltaics, and perovskite-based modules—highlighting their efficiency, stability, and commercial readiness. Integration pathways in roofs, façades, shading devices, and semi-transparent windows are discussed, alongside practical case studies from Europe, Japan, China, and the United States. Key technical challenges, such as encapsulation reliability, efficiency degradation, and recyclability, are analyzed, together with economic, regulatory, and market barriers. Future directions are proposed, including high-efficiency flexible perovskites, multi-functional BIPV systems, and IoT-enabled energy management, while predicting rapid market growth and increasing contributions to sustainable urban energy. Overall, FPV demonstrates significant potential to transform modern architecture into energy-generating, environmentally sustainable structures.

Keywords: flexible photovoltaics; BIPV; building integration; perovskite solar cells; sustainable architecture

1. Introduction

1.1. Global Building Energy and Carbon Emission Challenges

The building sector is one of the largest energy consumers and carbon emitters worldwide. According to the International Energy Agency (IEA), buildings account for about 36% of global final energy use and nearly 37% of energy-related carbon dioxide emissions. With the rapid process of urbanization and the growing demand for indoor comfort, the sector's energy intensity continues to rise. This situation has made decarbonization of buildings a crucial element of sustainable development. Improving building energy performance and integrating renewable energy technologies have therefore become vital strategies to achieve carbon neutrality in the coming decades [1].

1.2. Current Utilization of Solar Energy in Buildings

Among renewable energy options, solar energy has emerged as the most promising and accessible for building applications. Photovoltaic (PV) technology enables the direct conversion of sunlight into electricity, allowing buildings to become self-sustaining power producers. The *Building-Integrated Photovoltaic (BIPV)* concept combines architectural and energy functions, integrating solar modules into roofs, façades, skylights, or shading systems. This integration not only improves space utilization but also enhances building

aesthetics and energy efficiency. However, despite increasing awareness, the practical implementation of BIPV systems remains limited, mainly due to the structural and visual constraints of traditional rigid PV modules [2].

1.3. Limitations of Conventional Rigid BIPV Modules

Conventional BIPV systems primarily employ crystalline silicon (c-Si) panels encapsulated in glass, which are rigid, heavy, and difficult to install on complex building surfaces. Their weight—typically between 12 and 15 kg per square meter—restricts use on lightweight façades or older structures with limited load capacity [3]. Moreover, their inability to bend prevents integration into curved or irregular designs, limiting architectural creativity. From a construction perspective, rigid PV panels demand specialized mounting systems, reinforcement layers, and complex electrical routing, which increase both installation costs and maintenance efforts. Aesthetic concerns also arise because these modules are opaque, monochromatic, and visually intrusive.

To clearly demonstrate these contrasts, Table 1 presents a comparative summary of key differences between traditional rigid PV modules and modern flexible PV materials, including parameters such as weight, flexibility, efficiency, and installation cost. As the data show, flexible PVs significantly outperform rigid ones in terms of structural adaptability and design integration potential, marking a crucial step toward practical and aesthetic BIPV solutions [4].

Table 1. Comparison between traditional rigid PV modules and flexible PV materials.

Property	Rigid PV Modules (c-Si)	Flexible PV Materials (Thin-film, CIGS, OPV, Perovskite)
Weight (kg/m ²)	12-15	1-3
Flexibility	None	High (bending radius < 10 cm)
Efficiency (%)	18-23	12-20 (up to 25% for perovskite tandem)
Typical Applications	Flat rooftops, ground-mounted systems	Curved façades, lightweight roofs, mobile surfaces
Installation Cost (USD/Wp)	0.8-1.0	0.6-0.9 (depending on technology and substrate)

1.4. Emergence of Flexible Photovoltaic Materials

Flexible photovoltaic (FPV) materials have emerged as a next-generation solution capable of overcoming the inherent limitations of rigid PVs. These materials are characterized by lightweight substrates, mechanical flexibility, and compatibility with various architectural surfaces. Major flexible PV technologies include thin-film silicon, copper indium gallium selenide (CIGS), cadmium telluride (CdTe), organic photovoltaics (OPV), and perovskite solar cells (PSCs). Each possesses unique advantages in terms of energy conversion efficiency, stability, and scalability, while sharing the essential features of bendability and low weight—often between 1 and 3 kg per square meter [5].

Architecturally, flexible PVs can be laminated, rolled, or directly adhered to building components such as metal panels, glass façades, or membrane roofs. Their visual and mechanical adaptability allows architects to integrate renewable energy without sacrificing aesthetic quality. From a systems engineering viewpoint, flexible PVs can reduce installation costs by minimizing supporting structures and enabling prefabrication. Furthermore, their low weight and form flexibility make them particularly attractive for retrofitting existing buildings, which represent a major opportunity for carbon reduction in the built environment [6].

1.5. Scope and Objectives of This Review

Despite significant progress in flexible PV materials and device efficiency, a comprehensive understanding of their performance in *building-integrated* contexts remains limited. Most studies to date focus either on the material properties or the device physics, without considering architectural compatibility, installation feasibility, and long-term operational reliability. Therefore, this review aims to provide an integrated analysis of flexible PV materials in BIPV applications. It will (1) summarize major flexible PV technologies, (2) examine their building integration pathways, (3) present representative case studies and performance evaluations, and (4) discuss the challenges and future prospects for their widespread adoption.

By bridging materials science, building engineering, and sustainable design, this study seeks to clarify how flexible PVs can enable the transformation of traditional energy-consuming structures into energy-generating and carbon-neutral buildings [7].

2. Overview of Flexible Photovoltaic Technologies

Flexible photovoltaic (FPV) technologies have evolved significantly over the past two decades, driven by the demand for lightweight, bendable, and high-efficiency solar modules suitable for building integration. Unlike traditional crystalline silicon modules, FPVs employ thin and adaptable substrates—such as polymers, metal foils, or ultra-thin glass—that can conform to curved surfaces. This section provides an overview of five major FPV technologies: thin-film silicon, CIGS, CdTe, organic photovoltaics (OPV), and perovskite solar cells (PSCs). Each category is evaluated in terms of efficiency, mechanical durability, environmental stability, and commercial readiness [8].

The general photovoltaic conversion efficiency (η) of any solar cell can be expressed as:

$$\eta = \frac{P_{out}}{P_{in}} = \frac{V_{oc} \times J_{sc} \times FF}{P_{in}}$$

Where V_{oc} is the open-circuit voltage, J_{sc} is the short-circuit current density, FF is the fill factor, and P_{in} represents the incident solar power density (typically 1000 W/m² under AM1.5G illumination).

2.1. Thin-Film Silicon (a-Si, μ c-Si)

Thin-film silicon (TF-Si) solar cells are among the earliest developed flexible PV technologies. They utilize hydrogenated amorphous silicon (a-Si:H) or microcrystalline silicon (μ c-Si:H) as the active layer, typically deposited on polymer substrates (e.g., polyimide or PET) through plasma-enhanced chemical vapor deposition (PECVD). The total absorber thickness ranges between 0.3 and 1 μ m, making them significantly lighter than crystalline silicon counterparts.

The key advantage of a-Si solar cells is their excellent mechanical flexibility and low material consumption. They can achieve bending radii below 5 cm without performance degradation, which makes them suitable for curved façades and flexible roofing membranes. However, the efficiency of single-junction a-Si cells is relatively low, typically between 6% and 9%, due to intrinsic defects and light-induced degradation (Staebler-Wronski effect). Tandem or triple-junction a-Si/ μ c-Si cells have improved efficiency to 12–14%, but long-term stability remains a challenge.

Commercially, thin-film silicon technology has been widely used in lightweight modules such as Uni-Solar laminates and MiaSolé FLEX systems. These products demonstrate reliable operation for over 15 years with minimal performance loss under outdoor conditions. Nevertheless, limited efficiency and spectral response constrain their competitiveness in modern BIPV applications.

2.2. Copper Indium Gallium Selenide (CIGS)

CIGS-based solar cells have become one of the most promising flexible PV technologies due to their high efficiency and tunable bandgap (1.0-1.7 eV). The typical device structure includes a Mo back contact, CIGS absorber layer, CdS buffer, and ZnO/ITO front contact. When deposited on flexible substrates such as polyimide or stainless steel foils, CIGS cells can maintain high efficiency while retaining mechanical robustness.

Laboratory-scale CIGS devices have achieved 22.9% efficiency on rigid glass and 20.8% on flexible substrates. Their bending radius can reach 2-5 cm without microcrack formation, showing superior flexibility compared to rigid modules. CIGS materials also exhibit relatively high absorption coefficients ($>10^5 \text{ cm}^{-1}$), enabling the use of ultra-thin absorber layers ($\sim 2 \mu\text{m}$) while maintaining excellent light harvesting [9].

Industrial applications include Solar Frontier, MiaSolé, and Avancis, which have commercialized rollable CIGS modules suitable for lightweight building envelopes. The main challenge lies in ensuring process uniformity and long-term moisture stability, as the absorber is sensitive to oxygen and water vapor. Advanced encapsulation and barrier coatings (e.g., $\text{Al}_2\text{O}_3/\text{SiN}_x$ multilayers) are therefore crucial to maintain durability in outdoor BIPV environments [10].

2.3. Cadmium Telluride (CdTe)

CdTe thin-film solar cells represent another mature and cost-effective technology, characterized by a near-optimal bandgap of 1.45 eV. They have achieved a certified power conversion efficiency exceeding 22.1% on glass substrates and around 18-19% on flexible metal foils. CdTe films are typically deposited by close-spaced sublimation (CSS) or vapor transport deposition (VTD), which are scalable for industrial production [11].

CdTe's advantages include high absorption coefficients, relatively low fabrication temperature ($<450^\circ\text{C}$), and strong tolerance to defects. Flexible CdTe modules exhibit moderate mechanical stability, with bending radii down to 5-8 cm. However, the presence of toxic cadmium raises environmental and recycling concerns, which limits its wide deployment in urban applications with strict environmental standards [12].

Commercially, First Solar dominates CdTe production, though most of its products remain rigid. Nonetheless, ongoing research into ultra-thin flexible CdTe films deposited on metal foils or polymer substrates may soon open new possibilities for lightweight BIPV façades and portable power systems.

2.4. Organic Photovoltaics (OPV)

Organic photovoltaics rely on carbon-based semiconducting materials—typically conjugated polymers and fullerene (or non-fullerene) derivatives—as the donor and acceptor phases. Their most remarkable advantage lies in mechanical flexibility, color tunability, and low-temperature processing, enabling roll-to-roll (R2R) fabrication over large areas.

The typical device structure consists of a transparent electrode (ITO or Ag nanowire), an organic bulk-heterojunction (BHJ) active layer, an interfacial transport layer, and a metallic electrode. The best-performing OPV devices have achieved efficiencies exceeding 19% (laboratory) and 13-15% (flexible modules). The bending radius can reach as low as 1 cm, with over 90% efficiency retention after 1000 bending cycles.

OPVs are particularly attractive for semi-transparent PV windows, architectural façades, and aesthetic surfaces due to their customizable color and lightweight design ($<1 \text{ kg/m}^2$). However, environmental stability remains a critical issue—oxygen and moisture cause rapid degradation of organic molecules. Efforts such as encapsulation using multilayer barrier films (e.g., $\text{SiO}_x/\text{Al}_2\text{O}_3$ hybrids) and the development of intrinsically stable donor-acceptor polymers are key research directions for future BIPV adoption.

2.5. Perovskite Solar Cells (PSCs)

Perovskite solar cells (PSCs) have revolutionized the photovoltaic field, achieving record efficiencies exceeding 26% within a decade. Their crystal structure (ABX_3 , where $A = MA^+/FA^+$, $B = Pb^{2+}/Sn^{2+}$, and $X = I^-/Br^-/Cl^-$) provides tunable bandgaps (1.2-1.8 eV), high absorption coefficients, and long carrier diffusion lengths. These properties make PSCs ideal candidates for flexible PV applications.

Flexible PSCs are typically fabricated on polymer substrates using low-temperature processes (<150 °C), allowing high-throughput production. Recent studies report efficiencies of 23.6% on flexible PET substrates and bending radii as small as 5 mm, with minimal performance loss after 1000 cycles. The combination of perovskite and organic or CIGS tandem structures can potentially exceed 30% efficiency, offering remarkable potential for future BIPV.

However, perovskite materials are highly sensitive to humidity, oxygen, UV exposure, and mechanical stress. The main research focus is on encapsulation engineering, interface passivation, and lead-free alternatives (Sn-based) to ensure environmental stability. Several startups, including Saule Technologies and Microquanta, have demonstrated pilot-scale flexible perovskite modules used in façades and architectural shading systems.

2.6. Comparative Analysis and Discussion

When evaluating flexible PV technologies for BIPV applications, several performance parameters must be considered:

- 1) Efficiency (η): Determines the power output per unit area.
- 2) Flexibility radius (r_{min}): The smallest radius the module can withstand without cracking.
- 3) Environmental stability (S): Represents resistance to moisture, UV light, and temperature cycles.
- 4) Commercial maturity (CM): Ranges from lab-scale to mass production readiness.

As summarized in Table 2, CIGS and perovskite solar cells currently offer the best balance between efficiency and flexibility, while OPV provides unmatched aesthetic and form adaptability. Thin-film silicon and CdTe remain reliable but face limitations in energy conversion and environmental compatibility. Future research should focus on hybrid structures (e.g., perovskite-CIGS tandem cells), advanced encapsulation, and scalable roll-to-roll manufacturing to accelerate commercialization for BIPV markets.

Table 2. Summary of major flexible PV technologies and their representative parameters.

Technology	Efficiency (%)	Bending Radius (cm)	Environmental Stability	Typical Substrate	Commercial Maturity	Representative Company/Stud
Thin-film Si (a-Si, μ c-Si)	6-14	<5	Moderate (light-induced degradation)	Polyimide, PET	High (commercial)	Uni-Solar, MiaSole FLEX
CIGS	17-21 (lab up to 22%)	2-5	High (with encapsulation)	Polyimide, steel foil	High (commercial)	Solar Frontier, Avancis
CdTe	16-19	5-8	High (encapsulated)	Metal foil, glass	Medium (pilot)	First Solar (rigid), lab prototypes

OPV	13-19 (lab)	1-2	Low-Moderate	PET, PEN	Medium (early products)	Heliatek, Armor Solar Power Films
Perovskite (PSCs)	20-26 (lab), 18-22 (flexible)	0.5-1	Currently Low-Moderate (improving)	PET, PEN, thin glass	Low-Medium (pilot)	Saule Technologies, Microquanta

3. Integration Pathways in Building Applications

Flexible photovoltaic (FPV) materials provide unprecedented design freedom for architects and engineers by enabling energy generation to be seamlessly integrated into diverse building components. This section reviews the main integration pathways—including roofs, façades, building envelopes, shading devices, and transparent glazing—and discusses system-level compatibility, design considerations, and modeling approaches.

3.1. Roof and Façade Integration

Roof and façade integration remains the most direct pathway for applying FPVs in the built environment. Compared with conventional glass-encapsulated BIPV panels, flexible PV sheets can conform to curved or lightweight roofs and vertical façades without requiring bulky support structures. Their reduced weight ($1-3 \text{ kg m}^{-2}$) allows safe installation even on retrofitted buildings.

For an inclined roof with area A_r , tilt angle θ , and yearly solar irradiation $H(\theta)$, the expected annual electrical energy yield can be estimated as:

$$E_{\text{roof}} = \eta A_r H(\theta) PR$$

Where PR is the performance ratio accounting for system losses.

A similar approach applies to façades, though with orientation-dependent irradiance $H(\beta)$, typically 60-75 % of roof values in mid-latitude regions.

Integration challenges involve thermal management, as roof-mounted FPVs can reach surface temperatures exceeding 70°C . The temperature-dependent efficiency can be approximated by:

$$\eta(T) = \eta_{\text{ref}} [1 - \beta(T - T_{\text{ref}})]$$

Where β (typically $0.3-0.4 \% \text{ K}^{-1}$) is the temperature coefficient. Proper ventilation layers or thermally conductive substrates are thus crucial for maintaining stable output.

3.2. Building Envelope and Curtain Wall Design

Flexible PVs enable novel "energy skins" that combine aesthetic flexibility and energy functionality. When laminated onto aluminum composite panels, fiber-cement boards, or ETFE membranes, FPVs act as *active cladding materials* that harvest solar energy while serving as protective façades. Their minimal bending radius R allows adaptation to curved geometries, governed by the strain relation:

$$\epsilon = \frac{t}{2R} \leq \epsilon_c$$

Where t is total layer thickness and ϵ_c is critical strain. Typical flexible modules maintain mechanical integrity for $\epsilon_c \approx 0.8-1.2$.

Architecturally, FPV façades can employ colored or patterned top layers to blend with urban contexts. This enhances acceptance for heritage or aesthetic-sensitive buildings, addressing one of the major non-technical barriers to BIPV adoption.

3.3. Shading Systems and Dynamic Components

Flexible PVs can also be incorporated into sun-shading devices, louvers, blinds, or even kinetic façades that track the sun. These movable systems simultaneously reduce solar gain and produce electricity, enhancing building energy balance.

For a shading array with effective area A_s and solar transmittance T_s , the net heat gain to interior Q_{in} can be estimated as:

$$Q_{in} = (1-T_s)A_sG_t - \eta A_s G_t$$

Where G_t is incident solar irradiance. The second term represents electrical energy conversion offsetting thermal load.

Such dual-function systems can therefore improve both cooling performance and renewable generation simultaneously.

However, dynamic installations impose electrical challenges: flexible cabling, rotary joints, and mechanical fatigue cycles. The wiring layout must minimize bending strain at hinges, ideally maintaining radius $R_b > 50t$ to avoid delamination.

3.4. Transparent and Semi-Transparent BIPV Glazing

Another promising pathway involves transparent or semi-transparent FPVs integrated into glazing units. Organic and perovskite-based flexible cells can achieve visible light transmittance (T_{vis}) of 20-40 %, enabling their use in skylights or curtain walls. The optical and electrical trade-off is described by:

$$\eta_{opt} = \eta_0 (1-T_{vis})^\gamma$$

Where γ ($\approx 0.5-0.8$) reflects the dependence of absorption on transparency control layers.

Thermal simulation for such elements typically couples electrical generation with heat transfer through the glazing:

$$q_{net} = q_{solar} - \eta G_t - U(T_{in} - T_{out})$$

Where U is the overall heat transfer coefficient. Integration with low-E coatings or double-glazed units can enhance both energy yield and indoor comfort.

3.5. System Integration Challenges and Modeling Approaches

From a systems engineering perspective, flexible BIPV integration faces challenges in electrical interconnection, fire safety, waterproofing, and standardization:

- 1) **Wiring:** Flexible substrates often require embedded or printed conductive paths; contact resistance and mechanical fatigue must be minimized.
- 2) **Thermal Management:** Passive cooling by natural convection or thermally conductive backplates can reduce ΔT and maintain η .
- 3) **Fire Resistance:** Organic encapsulants and polymer backings must meet Class A or B fire rating per IEC 61730.
- 4) **Standardization:** Development of plug-and-play DC connectors, lightweight junction boxes, and flexible inverters remains ongoing.

Energy modeling tools such as EnergyPlus, PVsyst, or TRNSYS can simulate annual generation based on input parameters (orientation, η , PR, β , T_{ref}). For flexible systems, empirical correction factors accounting for curvature and local heating are added as:

$$E_{BIPV, flex} = E_{flat} (1 - \sigma_c - \sigma_T)$$

Where σ_c is curvature-induced optical loss ($\approx 2-5 \%$) and σ_T is temperature-induced performance loss ($\approx 3-10 \%$).

To illustrate practical integration outcomes and energy potential, Table 3 summarizes representative FPV applications across different building components and their typical annual generation densities.

Table 3. Examples of flexible PV integration scenarios in buildings and their energy generation potential.

Integration Type	Example Application	Typical Module Efficiency (%)	Orientation	Annual Energy Yield (kWh·m ⁻² ·yr ⁻¹)	Key Design Notes
Roof-mounted flexible sheets	Curved membrane roof (ETFE/CIGS)	18-20	25-35° tilt	120-160	Lightweight, easy retrofit; requires cooling gap
Vertical façade cladding	Aluminum composite panel + CIGS film	16-18	South-facing	80-110	Aesthetic integration, thermal expansion management
Dynamic shading louver	Rotatable OPV strips	10-12	Adjustable	60-90	Dual function: shading + power; fatigue control
Semi-transparent glazing	Perovskite or OPV windows	8-10	Vertical	50-70	Visual comfort, color tuning, lamination challenges
Canopy or skylight membrane	a-Si thin film on polymer	9-11	Horizontal	70-100	Diffuse-light response, flexible interconnects

4. Case Studies and Performance Evaluation

4.1. Purpose and Methodology

To assess the practical potential of flexible photovoltaic (PV) systems in building integration, representative international projects from Europe, Japan, China, and the United States were analyzed. The focus is on energy generation, cost, module efficiency, and climate adaptability, providing empirical evidence for the integration potential of flexible PV technologies in diverse architectural contexts.

The performance data were obtained from a combination of field measurements and simulation results reported in the literature. Installation costs and payback periods were included to evaluate economic feasibility across different regions.

4.2. Representative International Cases

4.2.1. Hamburg SolarLeaf Building, Germany

The SolarLeaf façade integrates CIGS-based flexible PV laminates within double-glass units. Covering 240 m², the modules generate approximately 25 KWh annually with an efficiency of 10.8%. Located in a temperate climate with moderate solar irradiation, the project demonstrates the feasibility of flexible façade PV systems and achieved a payback period of 9 years, benefiting from Germany's supportive feed-in tariff policy.

4.2.2. Kashiwa-no-ha Smart City, Japan

This project employs amorphous silicon (a-Si) thin-film modules on curved lightweight roofs, designed to withstand high humidity and typhoon conditions. With 300 m² of installed area, the system produces 22 KWh annually at an average efficiency of 8.5%. Its mechanical resilience under extreme weather highlights the advantage of flexible

PV for challenging environments, although efficiency remains lower than crystalline modules.

4.2.3. Green Tech Tower, Shenzhen, China

A high-rise office building integrates tandem perovskite-CIGS flexible cells into the curtain wall, forming a semi-transparent energy-producing skin. With 500 m² coverage and 14% module efficiency, the system yields 70 KWh annually. The tropical climate requires enhanced encapsulation to mitigate humidity-induced degradation. Cost optimization and high solar irradiation contribute to a relatively short payback period of 6.5 years.

4.2.4. Solar Window Demonstration, California, USA

This pilot project integrates organic PV (OPV) films into window panels, offering both electricity generation and aesthetic transparency. Covering 260 m², the system achieves 7.2% efficiency and generates 18 KWh annually. Lightweight modules (<1 kg/m²) simplify installation and retrofitting. Despite lower efficiency, OPV excels in design flexibility and visual appeal, making it suitable for office buildings and architectural features.

4.3. Comparative Performance Analysis

Across the four case studies, energy yield and payback period vary with climate conditions, solar irradiation, and module efficiency. Systems in tropical and Mediterranean climates outperform those in temperate regions by 30-45% due to higher available solar energy. Flexible PV technologies consistently allow installation on curved or lightweight surfaces, reducing structural load and installation complexity compared with rigid crystalline modules.

Perovskite-CIGS tandem modules offer the best balance between efficiency and flexibility, achieving higher output per unit area while maintaining architectural adaptability. OPV modules, while lower in efficiency, provide excellent design freedom and integration into semi-transparent façades. Across all cases, encapsulation and module durability remain critical for long-term performance, particularly in high-humidity or high-UV regions.

A detailed comparison of these projects is presented in Table 4, highlighting differences in technology, area, efficiency, annual energy yield, installation cost, payback period, and climate type.

Table 4. Performance comparison of representative flexible PV BIPV projects.

Project	Location	PV Technology	Area (m ²)	Efficiency (%)	Annual Yield (KWh)	Cost (USD/m ²)	Payback (Years)	Climate
SolarLeaf Façade	Germany	CIGS laminate	240	10.8	25	320	9.0	Temperate
Kashiwano-ha City	Japan	a-Si thin-film	300	8.5	22	280	10.2	Humid subtropical
GreenTech Tower	China	Perovskite-CIGS	500	14.0	70	350	6.5	Tropical
SolarWindow Demo	USA	OPV transparent	260	7.2	18	260	11.0	Mediterranean

4.4. Key Insights

- 1) Climate Dependence: Higher solar irradiation significantly increases annual energy yield.
- 2) Architectural Flexibility: Flexible PV enables curved façades, lightweight roofs, and semi-transparent glazing not possible with rigid modules.
- 3) Economic Viability: Payback periods range from 6.5 to 11 years, depending on local electricity prices and installation cost.
- 4) Technology Selection: Tandem perovskite-CIGS modules show the best combination of efficiency and flexibility, whereas OPV excels in transparency and aesthetics.

These case studies demonstrate that flexible PV materials provide both functional energy generation and design versatility, supporting their potential for wide adoption in modern buildings worldwide.

5. Challenges and Future Prospects

5.1. Technical Challenges

Despite significant progress in flexible photovoltaic (FPV) technologies, several technical hurdles continue to constrain widespread adoption. First, efficiency degradation remains a major concern. Flexible modules—especially organic and perovskite-based systems—are susceptible to environmental stressors, including UV exposure, humidity, and thermal cycling. Encapsulation strategies have improved longevity, but long-term performance under real building conditions still lags behind rigid crystalline silicon modules.

Second, encapsulation reliability and mechanical durability are critical. Repeated bending, wind load, and thermal expansion can lead to delamination or microcracks, reducing both energy output and lifespan. Researchers are exploring multi-layer barrier coatings and flexible adhesives to enhance durability, but standardization and quality control remain immature.

Finally, recyclability and sustainability of flexible PV materials present challenges. Many flexible modules incorporate polymers, rare metals, or tandem architectures that complicate end-of-life recycling. Developing environmentally friendly encapsulants and recovery processes is essential for future circular economy integration.

5.2. Market and Policy Barriers

Even with promising technical performance, FPV adoption is hindered by economic and regulatory constraints. High production costs, relative to traditional rigid PV panels, limit competitiveness in many regions. Although costs are decreasing, initial investment for large-scale building integration remains significant, especially when considering specialized installation techniques.

Moreover, lack of standardized testing and building codes for flexible PV materials slows market penetration. Many countries' construction regulations do not explicitly address BIPV systems, leaving uncertainty around fire safety, structural load limits, and electrical integration. Standardization efforts, including IEC and ASTM guidelines, are underway, but harmonized frameworks are not yet universal.

Finally, policy incentives—such as feed-in tariffs, tax rebates, and renewable portfolio standards—vary widely. Inconsistent or absent incentives can disincentivize developers from integrating flexible PV, particularly in regions with lower electricity prices or minimal regulatory support.

5.3. Future Research Directions

To address these barriers, future research is focusing on several key directions:

- 1) High-efficiency, stable flexible perovskite modules: Advances in tandem architectures and defect passivation are expected to improve both power

conversion efficiency and operational lifetime, bringing them closer to commercial viability.

- 2) **Multi-functional building integration:** Beyond electricity generation, flexible PV materials are increasingly being designed for **combined functions**, such as thermal insulation, shading, and decorative façades. This multi-functional approach enhances architectural appeal and building energy efficiency simultaneously.
- 3) **Digital modeling and smart control:** Integration of IoT-enabled BIPV systems allows real-time monitoring, predictive maintenance, and adaptive energy management. Simulation-driven design and predictive analytics can optimize orientation, shading, and energy storage to maximize overall building performance.

5.4. Market Growth and Energy Potential

The market for flexible BIPV is projected to grow significantly over the next decade. Analysts forecast annual growth rates of 15-20%, driven by rising demand for net-zero energy buildings and urban retrofitting projects. Flexible PV has the potential to contribute substantially to building-sector renewable energy, particularly in dense urban areas where traditional rooftop PV is limited. By 2035, integrated FPV systems could generate several TWh per year globally, reducing carbon emissions while providing architects with unprecedented design flexibility.

6. Conclusion

Flexible photovoltaic (FPV) materials represent a transformative advancement in building-integrated photovoltaics (BIPV), offering unique opportunities to merge renewable energy generation with architectural design. Unlike traditional rigid PV panels, flexible modules provide lightweight, conformable, and semi-transparent solutions, enabling installation on curved surfaces, façades, shading devices, and even windows. This adaptability not only expands the architectural integration potential but also allows for creative aesthetic designs that can harmonize with urban and historical environments.

The review of international case studies demonstrates that FPV systems can achieve meaningful energy contributions, even under varying climatic conditions. Projects employing CIGS, perovskite-CIGS tandem, and organic PV films have proven that energy yields of tens of KWh per year are attainable for relatively modest surface areas, while maintaining compatibility with building loads and form factors. Flexible PV therefore enables buildings to transition from passive energy consumers to active energy-generating structures, contributing directly to net-zero energy building objectives.

In terms of sustainability, FPV modules offer multiple advantages. Their reduced material and weight requirements lower the embodied energy associated with installation and structural reinforcement. Additionally, their potential for multi-functional integration-combining power generation with shading, thermal insulation, or decorative purposes-enhances the overall energy efficiency of buildings, reduces cooling loads, and improves occupant comfort. Such synergies demonstrate how FPV can play a central role in holistic sustainable building strategies.

Despite these advantages, several critical bottlenecks must be addressed for FPV BIPV to reach its full potential. Technically, long-term durability, encapsulation reliability, and resistance to environmental stressors remain major challenges. Efficiency of flexible modules still lags behind conventional crystalline silicon PV, particularly for organic and some perovskite devices, necessitating further research in material stability and tandem architectures. Economically, installation costs, lack of standardized building codes, and variable policy incentives continue to limit widespread adoption. Recyclability and end-of-life management are additional sustainability concerns that must be integrated into product design and regulatory frameworks.

Looking forward, the future of FPV in building integration is promising. Advancements in high-efficiency flexible perovskites, multi-functional façade systems, and IoT-enabled intelligent energy management are expected to overcome many of the current limitations. Market projections suggest continued rapid growth over the next decade, driven by urban retrofitting projects, net-zero energy mandates, and increased environmental awareness. By combining innovative materials science, architectural creativity, and digital energy management, FPV BIPV can emerge as a key enabler of sustainable, resilient, and aesthetically appealing urban infrastructure.

In conclusion, flexible photovoltaic technology is positioned to redefine the landscape of building-integrated renewable energy. Its unique blend of architectural adaptability, energy generation, and sustainability benefits makes it a compelling solution for modern and future cities. While technical, economic, and regulatory challenges remain, coordinated efforts in research, standardization, and policy support can unlock the full potential of flexible BIPV, ushering in a new era of sustainable, energy-positive building design.

References

1. S. Wang, C. Chen, Z. Zhang, Y. Cai, Y. Zhang, S. Gao, and P. Lu, "Efficient thermoelectric properties and high UV absorption of stable zinc-doped all-inorganic perovskite for BIPV applications in multiple scenarios," *Solar Energy*, vol. 267, p. 112240, 2024. doi: 10.1016/j.solener.2023.112240
2. X. Tian, J. Wang, J. Ji, and T. Xia, "Comparative performance analysis of the flexible flat/curved PV modules with changing inclination angles," *Energy Conversion and Management*, vol. 274, p. 116472, 2022. doi: 10.1016/j.enconman.2022.116472
3. J. Kong, Y. Dong, A. Poschnath, B. Rismanchi, and P. S. Yap, "Application of building integrated photovoltaic (BIPV) in net-zero energy buildings (NZEBs)," *Energies*, vol. 16, no. 17, p. 6401, 2023.
4. Q. Li, C. Monticelli, A. Kutlu, and A. Zanelli, "Environmental performance analysis of textile envelope integrated flexible photovoltaic using life cycle assessment approach," *Journal of Building Engineering*, vol. 89, p. 109348, 2024. doi: 10.1016/j.jobe.2024.109348
5. Y. Jiang, and Y. Qi, "Metal halide perovskite-based flexible tandem solar cells: next-generation flexible photovoltaic technology," *Materials Chemistry Frontiers*, vol. 5, no. 13, pp. 4833-4850, 2021. doi: 10.1039/d1qm00279a
6. C. Luo, X. Su, S. Ma, X. Chen, J. Ji, Y. Yu, and R. Peng, "Energy analysis of ventilated building-integrated semi-flexible crystalline silicon photovoltaic system under warm weather conditions," *Renewable Energy*, vol. 239, p. 122147, 2025. doi: 10.1016/j.renene.2024.122147
7. L. A. Castriotta, M. A. Uddin, H. Jiao, and J. Huang, "Transition of perovskite solar technologies to being flexible," *Advanced Materials*, vol. 37, no. 8, p. 2408036, 2025. doi: 10.1002/adma.202408036
8. M. Esmaeili Shayan, G. Najafi, B. Ghobadian, S. Gorjani, M. Mazlan, M. Samami, and A. Shabanzadeh, "Flexible photovoltaic system on non-conventional surfaces: a techno-economic analysis," *Sustainability*, vol. 14, no. 6, p. 3566, 2022. doi: 10.3390/su14063566
9. N. Neugebohrn, S. Haas, A. Gerber, M. Grimm, J. Nissel, R. Liebers, and M. Vehse, "Flexible design of building integrated thinfilm photovoltaics," *Progress in Photovoltaics: Research and Applications*, vol. 30, no. 10, pp. 1188-1197, 2022. doi: 10.1002/pip.3568
10. H. J. Alathlawi, S. Rabhi, T. Hidouri, H. Adawi, F. A. Makin, and A. A. Alsam, "Role of Ag Nanowires: MXenes in Optimizing Flexible, Semitransparent Bifacial Inverted Perovskite Solar Cells for BuildingIntegrated Photovoltaics: A SCAPS1D Modeling Approach," *Advanced Theory and Simulations*, vol. 8, no. 3, p. 2401004, 2025. doi: 10.1002/adts.202401004
11. Z. Shi, Z. Liu, T. Zhang, Y. Dong, H. Hong, Y. Yang, and J. Cai, "Mechanical performance analysis of the lightweight semi-flexible photovoltaic module," *Energy*, 2025. doi: 10.1016/j.energy.2025.138151
12. J. Cai, J. Fang, M. Liang, Q. Zhu, Z. Shi, Q. Li, and T. Zhang, "Dynamic performance enhancement in 2D and 3D curved flexible photovoltaic modules: Mismatch loss analysis and cell interconnection configurations optimization," *Applied Energy*, vol. 374, p. 124028, 2024. doi: 10.1016/j.apenergy.2024.124028

Disclaimer/Publisher's Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s) and contributor(s) and do not necessarily reflect the views of PAP and/or the editor(s). PAP and/or the editor(s) disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in the content.