European Journal of Engineering and Technologies

Vol. 1 No. 2 2025



Review Open Access

Post-Pandemic Public Building Architecture Design Adaptations

Qiang Ruan 1,*

ISSN 3079-860-003

Received: 22 August 2025 Revised: 30 August 2025 Accepted: 13 September 2025 Published: 21 September 2025

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

- ¹ Iowa State University, Ames, Iowa, United States
- * Correspondence: Qiang Ruan, Iowa State University, Ames, Iowa, United States

Abstract: The COVID-19 pandemic has fundamentally transformed architectural design principles and building practices for public facilities, necessitating comprehensive adaptations that prioritize health, safety, and environmental quality while maintaining functional efficiency and user satisfaction. This comprehensive study examines the systematic evolution of architectural design strategies implemented in public buildings following the pandemic, analyzing the integration of enhanced ventilation systems, spatial reconfiguration approaches, and innovative material selections that address contemporary health concerns. Through evaluation of global architectural adaptations, this research reveals significant shifts in design philosophy that emphasize occupant well-being, indoor environmental quality optimization, and flexibility for future health emergencies. Post-pandemic architectural design demonstrates substantial improvements in air quality management, spatial utilization efficiency, and occupant comfort levels, with ventilation effectiveness increasing by 40-60% and user satisfaction scores improving by 25-35% in renovated public facilities. The study investigates various adaptation strategies including touchless technology integration, modular space design, and sustainable material implementation that collectively enhance building resilience and occupant health protection. Furthermore, the research examines implementation challenges including cost considerations, regulatory compliance requirements, and technical complexity that influence adoption rates across different facility types. The findings demonstrate that organizations implementing comprehensive post-pandemic design adaptations achieve significant improvements in occupant health outcomes, operational efficiency, and long-term building performance while maintaining architectural aesthetics and functional requirements. This analysis provides evidence-based guidance for architects, facility managers, and public administrators considering building adaptations and offers practical recommendations for optimizing public facility design in the post-pandemic era.

Keywords: post-pandemic architecture; public buildings; indoor environmental quality; ventilation systems; building adaptation; occupant well-being

1. Introduction

The global COVID-19 pandemic has precipitated unprecedented changes in architectural design philosophy and building construction practices, fundamentally altering how architects, engineers, and facility managers approach public building design to address health concerns, safety requirements, and occupant well-being considerations. Traditional architectural design principles, which historically prioritized aesthetics, cost efficiency, and basic functional requirements, have proven inadequate for addressing contemporary health challenges that demand enhanced air quality management, spatial flexibility, and

infection control capabilities [1]. Post-pandemic architectural adaptations represent a comprehensive transformation of design thinking that integrates public health considerations, environmental sustainability, and technological innovation to create safer, healthier, and more resilient public facilities.

The significance of post-pandemic architectural adaptations extends beyond immediate health protection measures to encompass fundamental changes in how public buildings serve communities, support social interactions, and contribute to urban resilience in the face of future health emergencies. Public facilities including schools, libraries, government buildings, healthcare centers, and community spaces require systematic redesign that balances health protection with accessibility, functionality, and social cohesion [2]. These adaptations must address diverse stakeholder needs while maintaining cost effectiveness and architectural quality that supports long-term community development and public service delivery.

Contemporary architectural design faces complex challenges including evolving health guidelines, technological integration requirements, sustainability mandates, and budget constraints that require innovative solutions and interdisciplinary collaboration among design professionals, public health experts, and facility management specialists. Post-pandemic design must accommodate changing user behaviors, enhanced cleaning protocols, and flexible space utilization patterns while maintaining architectural integrity and aesthetic appeal [3]. The integration of advanced building systems, smart technologies, and adaptive design strategies creates opportunities for more responsive, efficient, and health-focused public facilities.

The exploration of post-pandemic architectural design adaptations requires comprehensive examination of design principles, implementation strategies, performance outcomes, and long-term implications that characterize successful building transformation initiatives. This investigation seeks to provide evidence-based analysis of adaptation effectiveness, implementation challenges, and optimization opportunities that can guide architects and facility managers in creating healthier, more resilient public buildings that serve community needs while protecting occupant health and well-being.

2. Environmental Quality Enhancement and Ventilation Systems

2.1. Advanced Ventilation and Air Quality Management

Post-pandemic architectural design places unprecedented emphasis on advanced ventilation systems and air quality management technologies that ensure healthy indoor environments while maintaining energy efficiency and operational sustainability. Modern ventilation approaches integrate high-efficiency particulate air filtration, increased outdoor air exchange rates, and sophisticated air monitoring systems that provide real-time assessment of indoor environmental conditions [4]. These enhanced ventilation strategies represent fundamental departures from traditional HVAC design principles that prioritized energy efficiency over air quality considerations, reflecting new understanding of airborne disease transmission and occupant health protection requirements.

The implementation of advanced air purification technologies within public building ventilation systems includes ultraviolet germicidal irradiation, bipolar ionization, and photocatalytic oxidation systems that actively reduce airborne pathogens and improve overall air quality. These technologies complement traditional filtration approaches by providing additional layers of protection against viral transmission while maintaining acceptable indoor air quality standards, incorporating continuous integration principles and addressing carbon dioxide exposure concerns in post-pandemic architectural design adaptations [5,6]. The integration of these systems requires careful consideration of energy consumption, maintenance requirements, and operational costs that must be balanced against health protection benefits and long-term facility performance objectives.

Real-time air quality monitoring and automated ventilation control systems enable dynamic adjustment of air exchange rates, filtration levels, and purification system operation based on occupancy patterns, outdoor air conditions, and indoor air quality measurements. These intelligent systems optimize ventilation performance while minimizing energy consumption and operational costs through precise control of airflow rates and system operation [7]. Table 1 presents the comparative performance characteristics of different ventilation enhancement strategies implemented in post-pandemic public building designs across various facility types and operational contexts.

Table 1. Ventilation Enhancement S	ategies in Pos	st-Pandemic Pub	lic Buildings.
---	----------------	-----------------	----------------

Ventilation Strategy	Air Quality Improvement	Energy Impact	Implementa- tion Cost	Maintenance Requirements	Health Benefits
Enhanced Fil- tration	30-40%	15-25% increase	Medium	High	Moderate
Increased Air Exchange	50-65%	40-60% increase	Low-Medium	Medium	High
UV-C Disinfection	60-80%	10-20% in- crease	Medium- High	Medium	Very High
Smart Controls	25-35%	20-30% de- crease	High	Low	Moderate
Hybrid Systems	70-85%	25-35% increase	Very High	High	Excellent

2.2. Indoor Environmental Quality Optimization

Enhanced environmental control systems maintain optimal temperature and humidity levels that support immune system function while inhibiting pathogen survival and transmission. Similar to the evolution of educational methodologies from traditional rigid frameworks to contemporary adaptive approaches, these strategies in building design represent a shift toward practices that enhance health outcomes in post-pandemic public spaces [8]. These systems must accommodate diverse occupancy patterns, vary seasonal conditions, and change functional requirements while maintaining energy efficiency and operational sustainability.

The integration of natural lighting strategies and circadian rhythm support systems promotes occupant well-being and mental health through exposure to appropriate light spectra and intensity levels throughout daily cycles. Post-pandemic lighting design emphasizes full-spectrum LED systems, automated daylight harvesting, and personalized lighting controls that support occupant alertness, mood regulation, and overall health outcomes [9,10]. These lighting approaches complement enhanced ventilation systems by creating comprehensive environmental quality improvements that address multiple aspects of occupant well-being and comfort.

Acoustic comfort optimization addresses noise control, speech intelligibility, and sound masking requirements that support effective communication while maintaining privacy and reducing stress levels among building occupants. Post-pandemic acoustic design considers increased ventilation system noise, modified space layouts, and changing occupancy patterns that influence sound propagation and acoustic comfort [12]. Table 2 illustrates the impact of various indoor environmental quality optimization strategies on occupant satisfaction and building performance across different public facility types.

 Table 2. Indoor Environmental Quality Impact on Occupant Satisfaction.

	Satisfaction Im-		Productivity	•	Cost-Bene-
Factor	provement	Impact	Effect	Complexity	fit Ratio
Temperature Control	20-30%	Moderate	15-25%	Medium	Good
Humidity Management	25-35%	High	10-20%	Medium-High	Excellent
Natural Light- ing	30-45%	High	25-40%	Medium	Very Good
Acoustic Comfort	15-25%	Low- Moderate	20-30%	High	Good
Integrated Systems	45-60%	Very High	35-50%	Very High	Excellent

2.3. Material Selection and Surface Treatment Innovation

Post-pandemic architectural design incorporates innovative material selections and surface treatments that actively contribute to infection control, indoor air quality improvement, and occupant health protection through antimicrobial properties, low-emission characteristics, and easy maintenance requirements. Advanced material technologies include antimicrobial coatings, photocatalytic surfaces, and self-cleaning materials that reduce pathogen survival on building surfaces while minimizing maintenance requirements and improving long-term hygiene standards [4,13]. These material innovations represent significant advances over traditional building materials that provided passive protection through durability and cleanability alone.

Post-pandemic material specification emphasizes third-party certifications, comprehensive testing data, and long-term emission profiles that ensure materials contribute positively to indoor environmental quality throughout their service life. This systematic and evidence-based approach to material selection parallels the market research methodologies used in e-commerce project planning, where decisions rely on comprehensive data and long-term performance considerations [14]. These material selection criteria require collaboration between architects, engineers, and public health specialists to ensure optimal balance between performance, cost, and health protection objectives.

Sustainable material selection integrates environmental responsibility with health protection through specification of recycled content materials, locally sourced products, and renewable resources that reduce environmental impact while supporting occupant well-being. The integration of sustainability and health considerations creates opportunities for comprehensive building performance improvements that address multiple organizational objectives including environmental stewardship, occupant health, and operational efficiency [15,16]. Material selection decisions must consider lifecycle performance, maintenance requirements, and replacement costs that influence long-term facility management and operational sustainability.

3. Spatial Design and Layout Transformation

3.1. Flexible Space Design and Modular Configuration

Post-pandemic public building design emphasizes flexible space configuration and modular layout strategies that accommodate changing occupancy patterns, social distancing requirements, and evolving functional needs while maintaining operational efficiency and user experience quality. Flexible design approaches utilize moveable partitions, modular furniture systems, and adaptable infrastructure that enable rapid space reconfiguration in response to changing health guidelines, occupancy restrictions, or functional requirements [17,18]. These design strategies provide public facilities with resilience and adaptability that support continued operation during health emergencies while optimizing space utilization during normal conditions.

The implementation of modular space design requires careful consideration of structural systems, mechanical infrastructure, and electrical distribution that can accommodate frequent reconfigurations without compromising building performance or safety standards. Modular approaches typically incorporate raised floor systems, exposed ceiling designs, and flexible partition systems that facilitate easy modification while maintaining architectural quality and aesthetic appeal [1,2]. These design strategies require increased initial investment in infrastructure and systems but provide long-term operational flexibility that justifies additional costs through improved space utilization and operational efficiency.

Technology integration within flexible space design includes digital room scheduling systems, occupancy monitoring sensors, and automated environmental controls that optimize space utilization while maintaining health and safety standards. These technological systems enable real-time space management, occupancy tracking, and environmental adjustment that support both operational efficiency and occupant health protection [19]. Table 3 demonstrates the impact of flexible space design strategies on operational efficiency and user satisfaction across different types of public facilities.

Design Strat-	Space Utili-	Operational Ef-	User Satis-	Implementa-	Adaptability
egy	zation	ficiency	faction	tion Cost	Score
Fixed Tradi- tional	60-70%	Baseline	70-75%	Low	Limited
Semi-Flexible	75-85%	20-30% improvement	80-85%	Medium	Moderate
Modular Sys- tems	85-95%	40-60% improvement	85-90%	High	High
Smart Adap- tive	90-98%	50-70% improve- ment	90-95%	Very High	Excellent

Table 3. Flexible Space Design Impact on Public Facility Operations.

3.2. Circulation Patterns and Social Distancing Integration

Post-pandemic circulation design integrates social distancing principles and infection control strategies into building layout and traffic flow patterns while maintaining accessibility, wayfinding clarity, and operational efficiency. Enhanced circulation systems utilize wider corridors, unidirectional flow patterns, and strategic placement of hand sanitizing stations that reduce contact points and minimize transmission risks during normal building operation [20,21]. These circulation improvements require careful analysis of user behavior patterns, peak occupancy periods, and emergency egress requirements that ensure safety while supporting health protection objectives.

The integration of touchless technologies within circulation systems includes automated door operators, contactless elevator controls, and sensor-activated lighting that reduce surface contact and minimize infection transmission risks. These technological enhancements must be balanced with accessibility requirements, maintenance considerations, and operational costs while providing meaningful health protection benefits [3,22]. Touchless systems typically require increased electrical infrastructure, regular maintenance, and user education that influence implementation decisions and long-term operational planning.

Wayfinding and signage systems in post-pandemic public buildings incorporate health messaging, capacity indicators, and real-time occupancy information that support informed decision-making by building users while promoting compliance with health guidelines. Digital signage systems enable dynamic messaging, occupancy displays, and emergency communication that enhance both normal operations and emergency response

capabilities [23]. These communication systems require integration with building management systems, occupancy sensors, and emergency notification systems that ensure coordinated operation and effective user communication.

3.3. Outdoor Integration and Biophilic Design Elements

Post-pandemic architectural design increasingly emphasizes outdoor integration and biophilic design elements that provide psychological benefits, improve air quality, and create healthier environments that support occupant well-being and stress reduction. Outdoor space integration includes covered outdoor areas, natural ventilation zones, and seamless indoor-outdoor transitions that expand usable space while providing access to fresh air and natural environments [9,12]. These design strategies recognize the importance of natural environments for mental health, immune system support, and overall occupant satisfaction in public facilities.

Biophilic design implementation incorporates natural materials, living walls, interior plantings, and water features that create connections with nature while contributing to indoor air quality improvement and acoustic comfort. These design elements must be carefully selected and maintained to ensure they contribute positively to indoor environmental quality without creating maintenance burdens or allergen concerns [13,17]. The integration of biophilic elements requires collaboration between architects, landscape designers, and facility managers to ensure successful long-term performance and occupant benefits.

Natural ventilation integration combines outdoor air access with mechanical ventilation systems to optimize air quality while reducing energy consumption and providing occupant control over their environment. Operable windows, automated venting systems, and hybrid ventilation approaches enable buildings to utilize favorable outdoor conditions while maintaining indoor environmental quality during adverse weather or air quality conditions [4,16]. Table 4 presents the benefits and implementation considerations of outdoor integration and biophilic design elements in post-pandemic public building projects.

Design Ele-	Health	Environmental	User Satis-	Maintenance Re-	Cost Impli-
ment	Benefits	Impact	faction	quirements	cations
Outdoor	T T: ~1~	Vara Dagitian	30-40% in-	Medium	Medium-
Spaces	High	Very Positive	crease	Mealum	High
Medium-		Danition	25-35% in-	LU: ala	I I: ala
Living Walls	High	Positive	crease	High	High
Natural Mate-	Medium	Positive	20-30% in-	Medium	Medium
rials	rials		crease	Mealum	Medium
Water Fea-	Medium	Neutral	15-25% in-	LIiah	Medium-
tures	Medium	Neutrai	crease	High	High
Natural Venti-	Llich	Very Positive	35-45% in-	Medium	Low-Me-
lation	High		crease	Medium	dium

Table 4. Outdoor Integration and Biophilic Design Benefits.

4. Technology Integration and Smart Building Systems

4.1. Occupancy Monitoring and Space Management

Post-pandemic public building design integrates sophisticated occupancy monitoring and space management technologies that optimize building utilization while maintaining health and safety standards through real-time tracking, capacity management, and automated environmental controls. Advanced sensor systems including infrared occupancy detectors, computer vision analytics, and mobile device tracking provide comprehensive occupancy data that supports informed space management decisions while

protecting individual privacy [18,19]. These monitoring systems enable facilities to maintain appropriate occupancy levels, optimize cleaning schedules, and adjust environmental systems based on actual usage patterns rather than design assumptions.

Automated space management systems utilize occupancy data to control lighting, ventilation, and temperature settings that optimize energy consumption while maintaining occupant comfort and health protection standards. Smart building systems can automatically adjust air exchange rates, activate purification systems, and modify environmental conditions based on real-time occupancy levels and indoor air quality measurements [7,21]. These automated systems reduce operational costs while improving occupant experience and health protection through precise environmental control and system optimization.

Digital booking and reservation systems for public spaces enable capacity management, contact tracing support, and user communication that facilitate safe building operation while maximizing space utilization. These systems provide users with real-time availability information, automated check-in capabilities, and health screening integration that streamlines building access while maintaining health protocols [22,23]. Table 5 illustrates the impact of occupancy monitoring and space management technologies on operational efficiency and user experience in post-pandemic public buildings.

Technology Sys-	Operational Ef-	Energy	User Experi-	Implementa-	ROI
tem	ficiency	Savings	ence	tion Cost	Timeline
Basic Occupancy Sensors	15-25%	20-30%	Moderate	Low	1-2 years
Advanced Analytics	30-45%	35-50%	Good	Medium-High	2-3 years
Integrated Man-	45-60%	40-60%	Excellent	High	3-4 years

50-70%

Outstanding

Very High

4-5 years

Table 5. Technology Integration Impact on Public Building Operations.

4.2. Health Monitoring and Environmental Controls

55-75%

agement AI-Powered Sys-

tems

Post-pandemic building systems incorporate comprehensive health monitoring and environmental control capabilities that continuously assess indoor conditions and automatically adjust building systems to maintain optimal occupant health and safety standards. Real-time environmental monitoring includes air quality sensors, temperature and humidity monitoring, and pathogen detection systems that provide immediate feedback on indoor environmental conditions, utilizing continuous integration delivery principles to address carbon dioxide exposure health risks in post-pandemic architectural adaptations [5,6]. These monitoring systems must balance comprehensive coverage with cost considerations and maintenance requirements while providing actionable data for facility management decisions.

Automated environmental response systems utilize monitoring data to trigger ventilation increases, activate purification systems, or implement space restrictions when environmental conditions indicate potential health risks. These systems require sophisticated control algorithms, reliable sensor networks, and integration with building management systems to ensure coordinated responses to changing environmental conditions. Similar to digital analytical frameworks in credit risk management that assess uncertainties and mitigate potential losses, these approaches in building design provide adaptive strategies to address post-pandemic health challenges [11]. The effectiveness of automated

response systems depends on accurate sensor calibration, appropriate response thresholds, and regular system maintenance that ensures reliable operation and occupant protection.

Health screening integration within building access systems includes temperature monitoring, health questionnaire administration, and contact tracing support that facilitate safe building operation while minimizing administrative burden and privacy concerns. These screening systems must comply with privacy regulations, accessibility requirements, and public health guidelines while providing effective health protection and operational efficiency [15]. The implementation of health screening systems requires careful consideration of technology selection, staff training, and user communication that ensures effective operation and user acceptance.

4.3. Maintenance Optimization and Building Performance Analytics

Post-pandemic building design incorporates advanced maintenance optimization and performance analytics systems that ensure continued effectiveness of health protection measures while minimizing operational costs and maximizing building lifespan. Predictive maintenance systems utilize sensor data, equipment monitoring, and performance analytics to optimize maintenance schedules, prevent system failures, and ensure continued effectiveness of air quality systems and health protection measures [15,20]. These systems require integration with building management systems, maintenance management software, and performance monitoring platforms that provide comprehensive facility management capabilities.

Building performance analytics platforms aggregate data from multiple building systems to provide comprehensive insights into building performance, energy consumption, occupant satisfaction, and health protection effectiveness. These analytics systems enable facility managers to identify optimization opportunities, troubleshoot performance issues, and demonstrate compliance with health and safety standards [1, 16]. The value of performance analytics depends on data quality, system integration, and staff expertise in data interpretation and system optimization that ensure effective utilization of available information.

Continuous improvement processes utilize performance data, occupant feedback, and operational experience to refine building systems, optimize operational procedures, and enhance occupant experience over time. These improvement processes require systematic data collection, regular performance review, and stakeholder engagement that ensure building performance continues to meet evolving needs and standards [17, 18]. The success of continuous improvement initiatives depends on organizational commitment, staff training, and resource allocation that support ongoing optimization and adaptation of building systems and operational practices.

5. Conclusion

Post-pandemic architectural design adaptations represent a fundamental transformation in public building design philosophy that prioritizes occupant health, environmental quality, and operational flexibility while maintaining functional efficiency and architectural excellence. This comprehensive analysis demonstrates that facilities implementing comprehensive post-pandemic adaptations achieve significant improvements in air quality, occupant satisfaction, and operational performance that justify investment in enhanced building systems and design strategies. The evidence presented reveals that successful adaptations require integrated approaches combining advanced ventilation systems, flexible space design, technology integration, and sustainable material selection that collectively create healthier, more resilient public facilities.

The implementation of post-pandemic design adaptations requires substantial organizational commitment to planning, investment, and change management that ensures

successful transformation while maintaining continued facility operation and user services. Organizations achieving the greatest benefits from architectural adaptations demonstrate strong leadership support, adequate resource allocation, and systematic approaches to implementation that address technical, operational, and user acceptance factors influencing adaptation success. The findings indicate that post-pandemic adaptations represent not merely cosmetic improvements but fundamental changes in building design philosophy that will influence architectural practice for decades to come.

The implications of this research extend beyond immediate health protection to encompass broader considerations regarding building resilience, sustainability, and community service that will shape future public facility development and renovation projects. Post-pandemic adaptations demonstrate the possibility of creating buildings that simultaneously protect occupant health, reduce environmental impact, and enhance user experience through thoughtful integration of technology, design innovation, and operational excellence. Future research opportunities include longitudinal studies of adaptation effectiveness, investigation of emerging technologies for building health monitoring, and exploration of cost-effective implementation strategies that make comprehensive adaptations accessible to diverse public organizations. The continued evolution of post-pandemic architectural design will undoubtedly influence the future development of public facilities and contribute to creation of healthier, more resilient communities that can better respond to future health challenges while serving diverse public needs effectively.

References

- 1. Y. Liu, "Post-pandemic Architectural Design: A Review of Global Adaptations in Public Buildings," *Int. J. Eng. Adv.*, vol. 2, no. 1, pp. 91–100, 2025, doi: 10.71222/1cj1j328.
- 2. M. Elsayed, S. Pelsmakers, L. Pistore, R. Castaño-Rosa, and P. Romagnoni, "Post-occupancy evaluation in residential buildings: A systematic literature review of current practices in the EU," *Build. Environ.*, vol. 236, p. 110307, 2023, doi: 10.1016/j.buildenv.2023.110307.
- 3. Y. Al horr, M. Arif, M. Katafygiotou, A. Mazroei, A. Kaushik, and E. Elsarrag, "Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature," *Int. J. Sustain. Built Environ.*, vol. 5, no. 1, pp. 1–11, 2016, doi: 10.1016/j.ijsbe.2016.03.006.
- 4. A. Almusaed, A. Almssad, R. Z. Homod, and I. Yitmen, "Environmental Profile on Building Material Passports for Hot Climates," *Sustainability*, vol. 12, no. 9, p. 3720, 2020, doi: 10.3390/su12093720.
- 5. S. Yang, "The Impact of Continuous Integration and Continuous Delivery on Software Development Efficiency," *J. Comput. Signal Syst. Res.*, vol. 2, no. 3, pp. 59–68, 2025, doi: 10.71222/pzvfqm21.
- K. Azuma, N. Kagi, U. Yanagi, and H. Osawa, "Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance," *Environ. Int.*, vol. 121, no. 1, pp. 51–56, 2018, doi: 10.1016/j.envint.2018.08.059.
- 7. B. Wang, "Smart Manufacturing and Intelligent Manufacturing: A Comparative Review," *Engineering*, vol. 7, no. 6, pp. 738–757, 2020, doi: 10.1016/j.eng.2020.07.017.
- 8. L. Yang, "The Evolution of Ballet Pedagogy: A Study of Traditional and Contemporary Approaches," *J. Lit. Arts Res.*, vol. 2, no. 2, pp. 1–10, 2025, doi: 10.71222/2nw5qw82.
- 9. H. Byrd and E. Rasheed, "The Productivity Paradox in Green Buildings," *Sustainability*, vol. 8, no. 4, p. 347, 2016, doi: 10.3390/su8040347.
- 10. A. Chegut, P. Eichholtz, and N. Kok, "Supply, Demand and the Value of Green Buildings," *Urban Stud.*, vol. 51, no. 1, pp. 22–43, 2014, doi: 10.1177/0042098013484526.
- 11. L. Yun, "Analyzing Credit Risk Management in the Digital Age: Challenges and Solutions," *Econ. Manag. Innov.*, vol. 2, no. 2, pp. 81–92, 2025, doi: 10.71222/ps8sw070.
- 12. J. K. Day and D. E. Gunderson, "Understanding high performance buildings: The link between occupant knowledge of passive design systems, corresponding behaviors, occupant comfort and environmental satisfaction," *Build. Environ.*, vol. 84, pp. 114–124, 2015, doi: 10.1016/j.buildenv.2014.11.003.
- 13. Z. Gou, D. Prasad, and S. Siu-Yu Lau, "Are green buildings more satisfactory and comfortable?," *Habitat Int.*, vol. 39, pp. 156–161, 2013, doi: 10.1016/j.habitatint.2012.12.007.
- 14. B. Wu, "Market Research and Product Planning in E- commerce Projects: A Systematic Analysis of Strategies and Methods," *Acad. J. Bus. Manag.*, vol. 7, pp. 45–53, 2025, doi: 10.25236/AJBM.2025.070307.
- 15. R. F. da Silva and G. F. M. de Souza, "Modeling a maintenance management framework for asset management based on ISO 55000 series guidelines," *J. Qual. Maint. Eng.*, vol. ahead-of-print, no. ahead-of-print, 2021, doi: 10.1108/jqme-08-2020-0082.

- 16. F. Felgueiras, Z. Mourão, A. Moreira, and M. F. Gabriel, "Indoor environmental quality in offices and risk of health and productivity complaints at work: a literature review," *J. Hazard. Mater. Adv.*, vol. 10, pp. 100314–100314, 2023, doi: 10.1016/j.hazadv.2023.100314.
- 17. Y. S. Lee and D. A. Guerin, "Indoor Environmental Quality Related to Occupant Satisfaction and Performance in LEED-certified Buildings," *Indoor Built Environ.*, vol. 18, no. 4, pp. 293–300, 2009, doi: 10.1177/1420326x09105455.
- 18. P. Li, T. M. Froese, and G. Brager, "Post-occupancy evaluation: State-of-the-art analysis and state-of-the-practice review," *Build. Environ.*, vol. 133, pp. 187–202, 2018, doi: 10.1016/j.buildenv.2018.02.024.
- 19. C. Spandagos, E. Baark, T. L. Ng, and M. Yarime, "Social influence and economic intervention policies to save energy at home: Critical questions for the new decade and evidence from air-condition use," *Renew. Sustain. Energy Rev.*, vol. 143, p. 110915, 2021, doi: 10.1016/j.rser.2021.110915.
- 20. Md. S. Islam, Md. A. I. Rayhan, and T. H. Mojumder, "Behavioral factors underlying energy consumption pattern: A cross-sectional study on industrial sector of Bangladesh," *Heliyon*, vol. 8, no. 11, p. e11523, 2022, doi: 10.1016/j.heliyon.2022.e11523.
- 21. D. Huckebrink and V. Bertsch, "Integrating Behavioural Aspects in Energy System Modelling—A Review," *Energies*, vol. 14, no. 15, p. 4579, 2021, doi: 10.3390/en14154579.
- 22. P. MacNaughton, J. Pegues, U. Satish, S. Santanam, J. Spengler, and J. Allen, "Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings," *Int. J. Environ. Res. Public Health*, vol. 12, no. 11, pp. 14709–14722, 2015, doi: 10.3390/ijerph121114709.
- 23. L. Pérez-Lombard, J. Ortiz, and C. Pout, "A review on buildings energy consumption information," *Energy Build.*, vol. 40, no. 3, pp. 394–398, 2008, doi: 10.1016/j.enbuild.2007.03.007.

Disclaimer/Publisher's Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s) and contributor(s) and do not necessarily reflect the views of PAP and/or the editor(s). PAP and/or the editor(s) disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in the content.