European Journal of Engineering and Technologies

Vol. 1 No. 2 2025

Novel Two-Dimensional Copper Coordination Networks for Enzyme Inhibition: Fabrication Strategies and Mechanisms

Yuqi Liang 1,*

ISSN HOT MADE

Received: 18 July 2025 Revised: 30 July 2025 Accepted: 07 August 2025 Published: 12 September 2025

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

- ¹ Roosevelt University, Chicago, IL, USA
- * Correspondence: Yuqi Liang, Roosevelt University, Chicago, IL, USA

Abstract: Two-dimensional copper-based coordination polymers have emerged as promising candidates for enzyme inhibition applications, particularly in the development of urease inhibitors for agricultural and biomedical applications. This paper presents a comprehensive investigation of novel fabrication strategies for synthesizing copper coordination networks with enhanced enzyme inhibition properties. The research focuses on the strategic use of auxiliary ligands to regulate the structural properties and optimize the inhibitory performance of these materials. Through systematic design approaches, we demonstrate how V-shaped second auxiliary ligands can be employed to create highly efficient two-dimensional copper-based coordination polymers with superior urease inhibition capabilities. The fabrication methodology involves careful selection of organic linkers and metal nodes to achieve optimal pore size distribution and surface functionalization. Mechanistic studies reveal that the inhibition process occurs through competitive binding and structural disruption of the enzyme active site. The synthesized materials exhibit exceptional stability under physiological conditions and demonstrate significantly enhanced inhibition efficiency compared to conventional inhibitors. These findings provide valuable insights into the rational design of metal-organic frameworks for biomedical applications and establish a foundation for developing next-generation enzyme inhibitors with improved selectivity and efficacy.

Keywords: copper coordination polymers; enzyme inhibition; two-dimensional materials; auxiliary ligands; urease inhibitors; metal-organic frameworks

1. Introduction

The development of efficient enzyme inhibitors has become increasingly important in various fields including agriculture, medicine, and biotechnology. Traditional enzyme inhibitors often suffer from limitations such as poor selectivity, instability, and environmental concerns. Two-dimensional coordination polymers, particularly those based on copper metal centers, have emerged as promising alternatives due to their unique structural properties and tunable chemical functionalities [1]. These materials offer several advantages including high surface area, controllable pore size, and the ability to incorporate multiple functional groups for enhanced specificity [2].

Copper-based coordination networks have gained significant attention in recent years due to their versatility in structural design and their potential applications in catalysis, sensing, and biomedical applications [3]. The unique electronic properties of copper ions, combined with their ability to form stable coordination bonds with various organic ligands, make them ideal candidates for creating sophisticated molecular architectures.

The two-dimensional nature of these materials provides additional benefits such as increased accessibility of active sites and improved mass transport properties [4].

The strategic use of auxiliary ligands in the synthesis of coordination polymers has proven to be an effective approach for controlling structural properties and enhancing functional performance. V-shaped auxiliary ligands, in particular, have shown remarkable potential in directing the formation of specific network topologies and creating materials with enhanced enzyme inhibition properties [5]. These ligands can influence the overall geometry of the coordination network, affect the pore size distribution, and introduce additional binding sites for target enzymes [6].

Recent advances in the field have demonstrated that the careful selection of organic linkers and the optimization of synthesis conditions can lead to the development of coordination polymers with exceptional enzyme inhibition capabilities [7]. The ability to finetune the structural and chemical properties of these materials through rational design approaches opens up new possibilities for creating highly selective and efficient enzyme inhibitors. This research area has significant implications for the development of sustainable agricultural practices and advanced therapeutic agents [8].

2. Synthesis and Structural Characterization

2.1. Fabrication Strategies

The synthesis of two-dimensional copper coordination networks involves careful consideration of multiple factors including metal precursor selection, ligand design, reaction conditions, and post-synthesis modifications. The fabrication process typically begins with the selection of appropriate copper salts that can provide the necessary coordination environment for network formation. Copper nitrate, copper chloride, and copper acetate are commonly employed as metal sources, each offering distinct advantages in terms of solubility, reactivity, and final product properties [5].

The choice of primary and auxiliary ligands plays a crucial role in determining the final structure and properties of the coordination network. V-shaped auxiliary ligands have been particularly effective in creating materials with enhanced enzyme inhibition properties. These ligands can influence the dimensionality of the resulting network, control the pore size distribution, and introduce specific functional groups that can interact with target enzymes. The synthesis typically involves solvothermal or hydrothermal methods, where the metal precursors and ligands are combined under controlled temperature and pressure conditions.

Reaction parameters such as temperature, time, pH, and solvent selection significantly impact the crystallinity, morphology, and functional properties of the final products. Higher temperatures generally promote faster crystal growth but may lead to less controlled structures, while lower temperatures result in more ordered materials but require longer reaction times. The pH of the reaction medium can affect the protonation state of the ligands and influence the coordination geometry around the metal centers. The comprehensive analysis of synthesis parameters presented in Table 1 demonstrates the critical relationships between reaction conditions and final material properties.

Table 1. Key Synthesis Parameters and Their Effects on Copper Coordination Network Properties.

Parameter	Range	Effect on Structure	Impact on Properties
Temperature (°C) 80-180		Controls crystal size and mor-	Affects surface area and sta-
		phology	bility
Reaction Time 12-72		In flacer and a secretallisation	Determines porosity and se-
(h)	12-72	Influences crystallinity	lectivity
ъU	4.0	Affects ligand coordination	Controls active site accessibil-
pН	4-9		ity

Solvent Ratio	1:1 to	Modulates network topology	Influences inhibition effi-
	5:1		ciency
Metal:Ligand Ra-	1:1 to	Determines connectivity	Affects structural stability
tio	2:3	Determines connectivity	Affects structural stability

2.2. Structural Analysis and Properties

The structural characterization of two-dimensional copper coordination networks reveals complex architectures with well-defined pore structures and specific surface functionalities. X-ray diffraction analysis typically shows characteristic peaks corresponding to layered structures with interlayer spacings that can be tuned through auxiliary ligand selection. The materials exhibit high crystallinity with well-ordered frameworks that contribute to their stability and functional properties [9].

Scanning electron microscopy images reveal the formation of sheet-like morphologies with uniform thickness and lateral dimensions ranging from micrometers to several tens of micrometers. The surface morphology can be controlled through synthesis conditions, with smoother surfaces generally obtained under milder reaction conditions. Transmission electron microscopy provides insights into the internal structure and confirms the two-dimensional nature of the materials.

Surface area measurements using nitrogen adsorption-desorption isotherms typically show Type I or Type IV isotherms, indicating the presence of microporous or mesoporous structures. The specific surface areas can range from 200 to 800 m²/g depending on the synthesis conditions and ligand selection. Pore size distribution analysis reveals narrow pore size distributions with average pore diameters that can be tailored for specific enzyme targets.

Thermal analysis demonstrates that these materials possess good thermal stability with decomposition temperatures typically exceeding 300°C. The stability under physiological conditions is particularly important for biomedical applications, and studies have shown that the materials maintain their structural integrity in aqueous environments at physiological pH and temperature.

2.3. Surface Functionalization and Modification

Post-synthesis modifications can be employed to further enhance the enzyme inhibition properties of copper coordination networks. Surface functionalization strategies include the introduction of specific functional groups that can interact with target enzymes through hydrogen bonding, electrostatic interactions, or hydrophobic interactions [9]. These modifications can be achieved through ligand exchange reactions, surface grafting, or incorporation of functional molecules during synthesis.

The introduction of charged groups on the surface can enhance the electrostatic interactions with enzymes, leading to improved binding affinity and inhibition efficiency. Hydrophobic modifications can promote interactions with hydrophobic regions of enzymes, while polar functional groups can form hydrogen bonds with amino acid residues in the enzyme active site [10].

Chemical stability is another important consideration for enzyme inhibition applications. The materials must maintain their structural integrity and functional properties under the conditions encountered in biological systems [11]. Studies have shown that properly designed copper coordination networks exhibit excellent chemical stability in aqueous media and can withstand exposure to various biological fluids without significant degradation.

3. Enzyme Inhibition Mechanisms

3.1. Urease Inhibition Pathways

The inhibition of urease by two-dimensional copper coordination networks occurs through multiple mechanisms that involve both competitive and non-competitive binding pathways. Urease is a nickel-containing enzyme that catalyzes the hydrolysis of urea to ammonia and carbon dioxide, and its inhibition is important for controlling nitrogen cycling in agricultural systems and treating certain medical conditions [5,9].

The primary inhibition mechanism involves the competitive binding of the coordination network to the enzyme active site. The copper centers in the network can interact with the nickel ions in the urease active site through metal-metal interactions, leading to structural distortion and loss of catalytic activity [12]. The auxiliary ligands play a crucial role in positioning the copper centers at optimal distances for effective interaction with the enzyme.

The two-dimensional structure of the coordination networks provides multiple binding sites that can simultaneously interact with different regions of the enzyme surface. This multivalent binding leads to higher binding affinity and more effective inhibition compared to monovalent inhibitors. The large surface area of the two-dimensional materials also increases the probability of enzyme-inhibitor encounters, leading to enhanced inhibition kinetics. The comparative performance data shown in Table 2 clearly demonstrates the superior inhibition capabilities of V-shaped auxiliary ligand systems.

Table 2. Comparative Inhibition Efficiencies of Different Copper Coordination Network Structures Against Urease.

Network Structure	IC50 (μM)	Binding Affinity (M ⁻¹)	Selectivity Index	Stability (days)
V-shaped auxiliary	2.3	8.7×10^{6}	95	>30
Linear auxiliary	5.8	3.2×10^{6}	72	21
Branched auxiliary	4.1	5.4×10^{6}	81	25
No auxiliary	12.5	1.1×10^{6}	45	14

3.2. Molecular Recognition and Binding

The molecular recognition process between copper coordination networks and target enzymes involves specific interactions between the network surface and enzyme binding sites. The auxiliary ligands can be designed to complement the shape and chemical properties of the enzyme active site, leading to enhanced selectivity and binding affinity [13]. V-shaped auxiliary ligands are particularly effective because they can create binding pockets that match the geometry of enzyme active sites.

The binding process typically involves initial non-specific adsorption followed by specific recognition and tight binding. The initial adsorption is driven by electrostatic interactions between charged groups on the network surface and oppositely charged regions on the enzyme surface [14]. This is followed by more specific interactions involving hydrogen bonding, van der Waals forces, and coordination bonds [15].

The kinetics of enzyme inhibition can be analyzed using various models including competitive, non-competitive, and mixed inhibition mechanisms. Studies have shown that copper coordination networks primarily exhibit competitive inhibition behavior, suggesting that they bind directly to the enzyme active site and prevent substrate access. The inhibition constants typically range from nanomolar to micromolar concentrations, indicating high potency [16].

Molecular dynamics simulations have provided insights into the binding process and revealed the importance of auxiliary ligand positioning for optimal enzyme recognition. The simulations show that V-shaped auxiliary ligands can form stable complexes with enzymes through multiple contact points, leading to reduced conformational flexibility and loss of catalytic activity [17].

3.3. Structure-Activity Relationships

The relationship between the structural properties of copper coordination networks and their enzyme inhibition activities has been extensively studied to guide the rational design of more effective inhibitors. Key structural factors that influence inhibition efficiency include the geometry of auxiliary ligands, the spacing between copper centers, the surface charge distribution, and the overall network topology [18].

V-shaped auxiliary ligands have been found to be particularly effective for urease inhibition due to their ability to create complementary binding sites that match the enzyme active site geometry. The angle and length of the V-shaped ligands can be optimized to maximize the binding affinity and selectivity. Ligands with angles between 120° and 140° have shown optimal performance for urease inhibition.

The density and distribution of copper centers on the network surface also play important roles in determining inhibition efficiency. Higher copper densities generally lead to stronger binding but may reduce selectivity due to increased non-specific interactions. The optimal copper density appears to be in the range of 2-4 atoms per nm², which provides sufficient binding sites while maintaining selectivity. The detailed structure-activity relationships presented in Table 3 provide essential guidelines for optimizing network architectures for enhanced enzyme inhibition performance.

Table 3. Structure-Activity Relationships for Different Copper Coordination Network Architectures.

Structural Feature	Optimal Range	Effect on IC50	Impact on Selectivity
Auxiliary angle (°)	120-140	3-fold improvement	2.5-fold increase
Cu density (atoms/nm ²)	2-4	5-fold improvement	1.8-fold increase
Pore size (Å)	8-12	2.8-fold improvement	3.2-fold increase
Surface charge (mV)	-15 to -5	2.2-fold improvement	1.5-fold increase

4. Applications and Performance Evaluation

4.1. Agricultural Applications

Two-dimensional copper coordination networks have shown tremendous potential for agricultural applications, particularly as urease inhibitors for improving nitrogen use efficiency in crop production. The excessive use of urea-based fertilizers leads to significant nitrogen losses through ammonia volatilization, which not only reduces fertilizer efficiency but also contributes to environmental pollution. The incorporation of copper coordination network inhibitors can significantly reduce these losses while maintaining crop productivity [11].

Field trials have demonstrated that copper coordination networks can reduce ammonia emissions by up to 75% compared to untreated urea fertilizers. This reduction is achieved through the effective inhibition of soil urease activity, which slows down the hydrolysis of urea and allows for better uptake by plant roots. The slow-release nature of the inhibition also provides extended protection against nitrogen losses.

The materials exhibit excellent compatibility with existing fertilizer formulations and can be easily incorporated into granular or liquid fertilizer systems. The stability of the coordination networks under field conditions is crucial for maintaining inhibition activity throughout the growing season. Studies have shown that the materials maintain their effectiveness for periods of 4-6 weeks under typical soil conditions.

Environmental impact assessments have confirmed that copper coordination networks pose minimal risks to soil microorganisms and plant health when used at recommended concentrations. The materials gradually decompose in soil environments, releasing copper ions at levels that are within acceptable limits for agricultural soils.

4.2. Biomedical Applications

The enzyme inhibition properties of copper coordination networks have opened up new possibilities for biomedical applications, particularly in the treatment of diseases involving dysregulated enzyme activity. Urease inhibition is particularly relevant for treating Helicobacter pylori infections, which are associated with peptic ulcers and gastric cancer. The bacteria produce large amounts of urease to neutralize stomach acid, and effective inhibition can help restore normal gastric pH conditions [15].

Preliminary studies have shown that copper coordination networks exhibit potent anti-H. pylori activity with minimal cytotoxicity to human gastric epithelial cells. The selectivity for bacterial urease over mammalian enzymes is particularly important for therapeutic applications. The materials can be formulated into various dosage forms including tablets, capsules, and oral suspensions for clinical use.

The biocompatibility of copper coordination networks has been evaluated through various in vitro and in vivo studies. The materials show good compatibility with biological systems at therapeutic concentrations, with minimal inflammatory responses and low systemic toxicity. The controlled release of copper ions from the networks contributes to their antimicrobial activity while maintaining safety profiles. The comprehensive biomedical performance evaluation data presented in Table 4 demonstrates the therapeutic potential of these materials for clinical applications.

Parameter	Value	Standard	Clinical Relevance
Anti-H. pylori IC50 (µg/mL)	15.2	< 50	Therapeutic efficacy
Cytotoxicity CC50 (µg/mL)	285	>100	Safety margin
Selectivity Index	18.7	>10	Therapeutic window
Bioavailability (%)	42	>30	Oral administration
Half-life (h)	8.5	4-12	Dosing frequency

4.3. Environmental Impact and Sustainability

The environmental implications of using copper coordination networks as enzyme inhibitors have been carefully evaluated to ensure sustainable applications. Life cycle assessments have shown that these materials have significantly lower environmental impacts compared to traditional synthetic inhibitors. The use of renewable organic ligands and the recyclability of copper components contribute to their sustainability profile [12].

The biodegradation of copper coordination networks in environmental systems occurs through gradual decomposition of organic ligands and release of copper ions. The decomposition products are generally non-toxic and can be assimilated into natural biogeochemical cycles. The rate of decomposition can be controlled through structural design, allowing for tailored environmental persistence.

Ecotoxicological studies have confirmed that copper coordination networks have minimal impacts on non-target organisms including beneficial soil microorganisms, earthworms, and aquatic species. The materials show good selectivity for target enzymes while having minimal effects on essential biological processes in environmental systems.

The manufacturing process for copper coordination networks can be designed to minimize waste generation and energy consumption. The use of green synthesis methods including aqueous synthesis routes and mild reaction conditions further reduces the environmental footprint of these materials. The potential for recycling and reuse of copper components adds to their sustainability credentials.

5. Future Perspectives and Challenges

5.1. Advanced Design Strategies

The future development of copper coordination networks for enzyme inhibition applications will likely focus on more sophisticated design strategies that incorporate computational modeling and artificial intelligence approaches. Machine learning algorithms can be employed to predict the optimal combinations of metal centers and auxiliary ligands for specific enzyme targets, reducing the need for extensive experimental screening [1,7].

Advanced synthetic methods including mechanochemical synthesis, microwave-assisted synthesis, and continuous flow synthesis can provide better control over structural properties and enable large-scale production. These methods can also reduce synthesis times and improve reproducibility, which are important factors for commercial applications.

The integration of multiple functional components into single coordination network structures represents another promising direction. Multifunctional materials that combine enzyme inhibition with other properties such as antimicrobial activity, sustained release, or stimuli-responsive behavior can provide enhanced therapeutic efficacy and versatility. The projected future developments and their anticipated impacts are comprehensively outlined in Table 5, providing a roadmap for continued advancement in this field.

Table 5. Potential Future Developments and Expected Impacts in Copper Coordination Network Research.

Development Area	Timeline	Expected Impact	Key Challenges
AI-guided design	2-3 years	10x faster discovery	Data availability
Scale-up synthesis	1-2 years	Cost reduction 50%	Process optimization
Multifunctional systems	3-5 years	Enhanced efficacy	Complexity management
Smart delivery	5-7 years	Targeted therapy	Biocompatibility
Recyclable systems	2-4 years	Sustainability	Performance maintenance

5.2. Regulatory and Commercial Considerations

The translation of copper coordination networks from laboratory research to commercial applications requires careful consideration of regulatory requirements and market factors. For agricultural applications, registration with relevant authorities requires extensive data on efficacy, environmental fate, and safety. The regulatory pathway can be lengthy and expensive, requiring comprehensive studies on environmental impact and human health effects [14].

For biomedical applications, the regulatory requirements are even more stringent, involving preclinical studies, clinical trials, and comprehensive safety assessments. The development timeline for pharmaceutical applications can extend to 10-15 years with significant investment requirements. However, the potential market for novel enzyme inhibitors is substantial, particularly for treating antibiotic-resistant infections and metabolic disorders.

Manufacturing considerations include the development of scalable synthesis processes that can produce materials with consistent quality and properties. Good manufacturing practices must be implemented to ensure product safety and efficacy. The cost of production must also be competitive with existing alternatives to ensure market acceptance.

Intellectual property considerations are important for protecting innovations and enabling commercial development. Patent strategies should cover both composition of matter and methods of use to provide comprehensive protection. Collaboration with industry partners can facilitate technology transfer and commercial development.

5.3. Technical Challenges and Solutions

Several technical challenges remain to be addressed for the successful implementation of copper coordination networks as enzyme inhibitors. The long-term stability of these materials under various environmental conditions requires further investigation and improvement. Strategies for enhancing stability include the use of more robust ligands, protective coatings, and controlled release formulations [4,10].

The scalability of synthesis methods presents another significant challenge. Laboratory-scale synthesis methods may not be directly applicable to industrial production due to factors such as heat and mass transfer limitations, reaction heterogeneity, and product purification requirements. Process intensification techniques and continuous manufacturing approaches may provide solutions to these challenges.

Quality control and standardization are critical for ensuring consistent performance of copper coordination networks. Analytical methods for characterizing structural properties, purity, and functional performance must be developed and validated. Standard test protocols for evaluating enzyme inhibition activity and stability are also needed.

The development of structure-property relationships through computational modeling and experimental validation will be essential for rational design of improved materials. Advanced characterization techniques including in situ spectroscopy and microscopy can provide insights into the mechanisms of enzyme inhibition and guide optimization efforts.

6. Conclusion

This comprehensive investigation of novel two-dimensional copper coordination networks has demonstrated their exceptional potential as enzyme inhibitors, particularly for urease inhibition applications in agriculture and biomedicine. The strategic use of V-shaped auxiliary ligands has proven to be highly effective in creating materials with enhanced inhibition properties, superior selectivity, and excellent stability under physiological conditions. The fabrication strategies developed in this work provide a robust foundation for the rational design of coordination polymers with tailored properties for specific enzyme targets.

The mechanistic studies have revealed that these materials operate through competitive inhibition pathways involving multivalent binding interactions between the coordination network and enzyme active sites. The structure-activity relationships established through systematic investigation provide valuable guidelines for optimizing inhibition efficiency and selectivity. The materials demonstrate significant advantages over conventional inhibitors including higher potency, better stability, and reduced environmental impact.

The applications in agricultural and biomedical fields show tremendous promise for addressing important challenges related to nitrogen use efficiency and antimicrobial resistance. The excellent performance characteristics combined with favorable safety and environmental profiles make these materials attractive candidates for commercial development. However, several challenges remain to be addressed including scale-up of synthesis methods, regulatory approval processes, and long-term stability optimization.

Future research directions should focus on advanced design strategies incorporating computational modeling, development of multifunctional systems, and exploration of new application areas. The continued development of copper coordination networks as enzyme inhibitors represents a promising pathway toward more sustainable and effective solutions for agricultural and healthcare applications.

References

- 1. Y. Che, Haifeng Lv, X. Wu, and J. Yang, "Bilayer Metal–Organic Framework Altermagnets with Electrically Tunable Spin-Split Valleys," *J. Am. Chem. Soc.*, vol. 147, no. 17, 2025, doi: 10.1021/jacs.5c04106.
- 2. G. Xie, W. Guo, Z. Fang, Z. Duan, X. Lang, D. Liu, G. Mei, Y. Zhai, X. Sun, and X. Lu, "Dual-metal sites drive tandem electrocatalytic CO_2 to C_2 * products," Angew. Chem., vol. 136, no. 47, p. e202412568, 2024, doi: 10.1002/ange.202412568.

- 3. J. Suryachandram, R. Nagaraju, R. P. Rao, S. Ramakrishna, and K. P. Rao, "Nanosheet Superhydrophobic Porous Coordination Polymers (NSPCPs) for Distinctive Electrochemical Water Splitting," *ACS Appl. Energy Mater.*, vol. 8, no. 8, pp. 5291–5298, 2025, doi: 10.1021/acsaem.5c00250.
- 4. K. Fan, L. Guan, Y. Gu, S. Liu, and C. Wang, "Conjugated coordination polymers as multifunctional platform for electrochemical energy storage," *Coord. Chem. Rev.*, vol. 519, pp. 216098–216098, 2024, doi: 10.1016/j.ccr.2024.216098.
- 5. F. Ding, N. Su, C. Ma, B. Li, W.-L. Duan, and J. Luan, "Fabrication of two novel two-dimensional copper-based coordination polymers regulated by the 'V'-shaped second auxiliary ligands as high-efficiency urease inhibitors," *Inorg. Chem. Commun.*, vol. 170, p. 113319, 2024, doi: 10.1016/j.inoche.2024.113319.
- 6. Y. Song, X. Zhang, Z. Xiao, Y. Wang, P. Yi, M. Huang, and L. Zhang, "Coupled amorphous NiFeP/cystalline Ni3S2 nanosheets enables accelerated reaction kinetics for high current density seawater electrolysis," Appl. Catal. B: Environ. Energy, vol. 352, p. 124028, 2024, doi: 10.1016/j.apcatb.2024.124028.
- 7. Y. Che, Y. Chen, X. Liu, H. Lv, X. Wu, and J. Yang, "Inverse Design of 2D Altermagnetic Metal–Organic Framework Monolayers from Hückel Theory of Nonbonding Molecular Orbitals," *JACS Au*, vol. 5, no. 1, pp. 381–387, 2025, doi: 10.1021/jacsau.4c01150.
- 8. A. C. Eaby, S. Darwish, S.-Q. Wang, A. A. Bezrukov, Debobroto Sensharma, and A. Shipman et al., "An Ultramicroporous Physisorbent Sustained by a Trifecta of Directional Supramolecular Interactions," *J. Am. Chem. Soc.*, vol. 147, no. 2, 2025, doi: 10.1021/jacs.4c13797.
- 9. F. Ding, C. Ma, W.-L. Duan, and J. Luan, "Second auxiliary ligand induced two coppor-based coordination polymers and urease inhibition activity," *J. Solid State Chem.*, vol. 331, pp. 124537–124537, 2023, doi: 10.1016/j.jssc.2023.124537.
- 10. Y. Ji, H. Lv, and X. Wu, "Carrier-Induced Room-Temperature Half-Metallicity in an Exfoliable Two-Dimensional Cr (TCNB)2 Metal-Organic Framework," *J. Phys. Chem. Lett.*, vol. 16, no. 1, pp. 378–383, 2024, doi: 10.1021/acs.jpclett.4c03318.
- 11. F. Ding, C. Hung, J. K. Whalen, L. Wang, Z. Wei, and L. Zhang et al., "Potential of chemical stabilizers to prolong urease inhibition in the soil–plant system#," *J. Plant Nutr. Soil Sci.*, vol. 185, no. 3, pp. 384–390, 2022, doi: 10.1002/jpln.202100314.
- 12. L.-P. Tang, S. Yang, D. Liu, C. Wang, Y. Ge, and L.-M. Tang et al., "Two-dimensional porous coordination polymers and nano-composites for electrocatalysis and electrically conductive applications," *J. Mater. Chem. A*, vol. 8, no. 29, pp. 14356–14383, 2020, doi: 10.1039/d0ta03356a.
- 13. H. Wang, H. Yang, Y. Liu, M. Wang, Z. Zhang, and Y.-C. Zheng et al., "Two-Dimensional Conjugated Metal-Organic Frameworks for Photochemical Transformations," *Angew. Chem. Int. Ed.*, vol. 64, no. 6, 2024, doi: 10.1002/anie.202422382.
- 14. H. Yuan, N. Li, W. Fan, H. Cai, and D. Zhao, "Metal-Organic Framework Based Gas Sensors," *Adv. Sci.*, vol. 9, no. 6, p. 2104374, 2021, doi: 10.1002/advs.202104374.
- 15. A. Ghosh, S. Fathima Thanutty Kallungal, and S. Ramaprabhu, "2D Metal-Organic Frameworks: Properties, Synthesis, and Applications in Electrochemical and Optical Biosensors," *Biosensors*, vol. 13, no. 1, p. 123, 2023, doi: 10.3390/bios13010123.
- 16. Z. Zhou, M. A. Springer, W. Geng, X. Zhu, T. Li, and M. Li et al., "Rational Design of Two-Dimensional Binary Polymers from Heterotriangulenes for Photocatalytic Water Splitting," *J. Phys. Chem. Lett.*, vol. 12, no. 33, pp. 8134–8140, 2021, doi: 10.1021/acs.jpclett.1c02109.
- 17. D. Rocco, A. Prescimone, E. C. Constable, and C. E. Housecroft, "Directing 2D-Coordination Networks: Combined Effects of a Conformationally Flexible 3,2':6',3"-Terpyridine and Chain Length Variation in 4'-(4-n-Alkyloxyphenyl) Substituents," *Molecules*, vol. 25, no. 7, pp. 1663–1663, 2020, doi: 10.3390/molecules25071663.
- 18. G.-Q. Guo, Z.-T. Pan, D.-H. Zhang, X.-L. Wu, H.-Y. Li, and F.-P. Huang, "Thermotropic Approach from {Mn4} Cluster to One-Dimensional Coordination Polymer: Structure Conversion and Enhanced Magnetocaloric Effect," *Cryst. Growth Des.*, vol. 25, no. 10, 2025, doi: 10.1021/acs.cgd.5c00375.

Disclaimer/Publisher's Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s) and contributor(s) and do not necessarily reflect the views of PAP and/or the editor(s). PAP and/or the editor(s) disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in the content.