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Abstract: Large-scale AI infrastructure presents significant challenges to database systems, particu-
larly in managing high concurrency, minimizing response latency, and ensuring high availability. 
This article focuses on addressing three critical performance bottlenecks: query efficiency, storage 
I/O throughput, and concurrency control mechanisms. To tackle these challenges, we propose a 
comprehensive suite of performance acceleration techniques, including structural reconstruction of 
database schemas, hierarchical layering of hot and cold data to optimize access patterns, and ad-
vanced transaction scheduling strategies to reduce conflicts and improve throughput. These opti-
mization methods are rigorously validated through application in representative AI scenarios such 
as large-scale model training and real-time online inference services. Experimental results demon-
strate that the integrated optimization framework significantly enhances database performance, 
providing more robust and scalable data support for complex AI workloads, ultimately enabling 
more efficient and reliable AI infrastructure operations. 
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1. Introduction 
With the rapid advancement and widespread adoption of artificial intelligence (AI) 

across diverse industries, the demand for robust and high-performance large-scale AI in-
frastructure has grown exponentially. At the core of this infrastructure lies the database 
system, which serves as a fundamental backbone supporting critical AI operations such 
as model training, real-time inference, and comprehensive data management. The perfor-
mance of these database systems directly influences the efficiency and scalability of AI 
workloads. However, traditional database architectures face significant challenges and 
inherent bottlenecks when confronted with the unique demands of AI applications, in-
cluding low query latency requirements, intense storage input/output (I/O) pressure, and 
complex concurrency control under conditions of massive, heterogeneous, and frequently 
interacting datasets. To effectively meet these challenges, it is imperative to develop data-
base optimization strategies that offer both strong generalizability and scalability tailored 
to the specific characteristics of AI systems. This study systematically examines database 
performance issues from three critical perspectives—query optimization, storage struc-
ture reconstruction, and transaction scheduling—and presents a set of practical, scalable 
solutions designed to enhance the operational efficiency, responsiveness, and reliability 
of databases within large-scale AI environments. 
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2. Characteristics of Database Applications in Large-Scale AI Infrastructure 
As the central hub for data flow and task scheduling, the database system plays a 

critical role across multiple stages of AI workflows, including data collection, prepro-
cessing, model development and training, online inference, and feedback integration. AI 
workloads typically involve extremely high-frequency data read and write operations, 
particularly during the modeling and training phases, where large volumes of feature 
data must be accessed efficiently for batch processing and large-scale computation. In real-
time inference services, databases are required to deliver ultra-low latency and support 
high levels of concurrent access to meet stringent performance demands. Moreover, AI 
systems aggregate data from a variety of heterogeneous sources, including structured log 
files, unstructured image data, and time-series sensor streams, which significantly in-
creases the complexity of data integration and necessitates highly flexible and scalable 
database architectures. Concurrently, the widespread adoption of containerization and 
microservices has driven database systems toward distributed, elastic, and cloud-native 
deployments. Consequently, beyond traditional data storage, modern databases must of-
fer robust support for high concurrency, horizontal scalability, and advanced data analyt-
ics capabilities to effectively handle the diverse, dynamic, and complex workloads char-
acteristic of large-scale AI infrastructures [1]. 

3. Analysis of Database Performance Bottlenecks 
3.1. Query Performance Bottlenecks: Slow Queries, Index Failures, High Join Overhead 

In large-scale AI infrastructure, database query frequency is high and query perfor-
mance bottlenecks are obvious. One common problem is slow query speed in model train-
ing and online inference, which can result in significant response time delays due to com-
plex SQL statements or large amounts of data. Another major issue is index failure, often 
caused by field type mismatches, nested functions, or uneven data distribution. These fac-
tors can force the database to perform full table scans, significantly increasing system load. 
Thirdly, in AI application environments, it is often necessary to perform multi table JOIN 
to integrate feature data. If the join order is poorly planned and indexing is inadequate, 
the consumption of computational resources and memory will increase significantly (Ta-
ble 1). 

Table 1. Analysis of Types and Causes of Query Performance Bottlenecks. 

Serial 
Num-

ber 

question 
type 

Main performance Cause analysis Typical impact 

1 
slow 

query 

Long query re-
sponse time and ex-

ecution lag 

Large amount of data, 
complex SQL logic, and 

index misses 

System delay increases, 
blocking other operations 

2 
Index in-

valid 

Query not indexed, 
resulting in full ta-

ble scan 

Type mismatch, nested 
functions, fuzzy match-
ing, skewed data distri-

bution 

Low query efficiency, in-
creased CPU and IO re-

source usage 

3 

JOIN has 
high 
over-
head 

Multiple table asso-
ciations cause 

memory overflow 
or response timeout 

Related fields not in-
dexed, imbalanced data 
volume, connection or-
der and algorithm not 

optimized 

The execution efficiency 
of the query plan is low, 
and the system through-
put capacity is reduced 
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3.2. Storage and IO Bottleneck: High Disk Load, Failure to Separate Hot and Cold Data 
In large-scale AI systems, storage and I/O performance often become critical bottle-

necks that directly impact the responsiveness, scalability, and stability of the entire plat-
form. The first and most prominent challenge is high disk load. As AI platforms continu-
ously ingest and process massive volumes of data—including training datasets, system 
logs, feature stores, and intermediate computation results—disk I/O frequently operates 
under high saturation. This persistent strain can lead to elevated read/write latency, in-
creased data access contention, and even system stalls under peak workloads. 

The second bottleneck involves the failure to separate hot and cold data effectively. 
AI systems typically maintain a mix of real-time operational data—such as user interac-
tion logs or updated model parameters—and large repositories of historical or infre-
quently accessed data. Without a hierarchical or tiered storage strategy to distinguish be-
tween high-frequency (hot) and low-frequency (cold) data, frequently accessed datasets 
are forced to compete for limited I/O bandwidth alongside archival data [2]. This not only 
lowers system throughput but also diminishes the efficiency of caching mechanisms and 
increases memory pressure. 

The third issue stems from suboptimal storage architecture, particularly when deal-
ing with heterogeneous or unstructured data types. Unstructured data such as images, 
videos, and sensor signals are often stored alongside structured metadata in a monolithic 
design without proper categorization, indexing, or isolation. This lack of logical and phys-
ical separation not only degrades access patterns but also intensifies I/O contention due 
to fragmented storage layouts and inefficient retrieval paths. 

Together, these factors severely constrain the scalability of AI infrastructure, making 
it difficult to meet the latency-sensitive demands of training, inference, and real-time an-
alytics tasks. Addressing these bottlenecks requires a comprehensive redesign of the data 
storage strategy, incorporating intelligent data placement, multi-tier caching, and adap-
tive I/O scheduling to better align with the workload characteristics of AI systems (Table 
2). 

Table 2. Analysis of Storage and IO Bottleneck Issues. 

Serial 
Num-

ber 

question 
type 

Main perfor-
mance 

Cause analysis Typical impact 

1 
Disk load 
too high 

IO waiting time is 
long, and disk uti-
lization continues 
to approach 100% 

Frequent batch read and 
write operations, central-
ized large file operations, 

and no IO scheduling opti-
mization mechanism 

Delay in query re-
sponse and decrease in 
system throughput ca-

pacity 

2 
Cold and 

hot data not 
separated 

High frequency 
access with low 
data access effi-

ciency 

All data is stored uni-
formly, lacking access fre-

quency recognition and 
data layering mechanism 

High frequency data 
access is blocked by 
low-frequency data, 

resulting in system in-
stability 

3 

Slow pro-
cessing of 
unstruc-

tured data 

Slow response to 
reading logs, im-
ages, and model 

files 

No dedicated storage 
strategy, incompatible 

with traditional row stor-
age structure 

Improved access la-
tency and reduced 

data processing effi-
ciency 

3.3. Concurrent Access Bottlenecks: Lock Competition, Transaction Conflict, Connection Pool 
Exhaustion 

In the high concurrency environment of large-scale AI tasks, database systems will 
encounter serious concurrency access bottlenecks. Firstly, lock competition is severe. 
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When multiple training and inference processes need to use the same data, they will face 
frequent row level and table level lock conflicts, which can cause blockages and lags, re-
sulting in serious impacts. Secondly, transaction conflicts, especially in data write inten-
sive scenarios, are evident. The backlog or conflicts of unsubmitted transactions can lead 
to frequent rollback, affecting database consistency and stability. Thirdly, there is a back-
log of connection pools. Connection pool exhaustion is a common problem under high-
concurrency conditions. In microservice architectures, excessive short-lived connection 
requests can quickly saturate the pool, impairing the system's ability to respond to new 
requests. These overlapping issues directly limit the AI infrastructure services provided 
by the database (Table 3). 

Table 3. Analysis of Types and Causes of Concurrent Access Bottlenecks. 

Serial 
Num-

ber 

question 
type 

Main perfor-
mance 

Cause analysis Typical impact 

1 
lock con-
tention 

Query or write re-
quest blocking, 

slow transaction 
execution 

Multiple concurrent transac-
tions accessing the same re-

source without proper use of 
lock granularity or scheduling 

strategies 

System latency in-
creases and re-

source utilization 
efficiency decreases 

2 
Transaction 

Conflict 

Submission fail-
ure, frequent roll-

back, data con-
sistency risk 

Frequent write operation con-
flicts and improper transaction 

isolation level settings 

Increasing pro-
cessing burden and 
affecting data relia-

bility 

3 
Connection 

pool ex-
hausted 

New connection 
request rejected, 
system response 

failed 

The concurrent access count 
exceeds the capacity of the 

connection pool, and the con-
nection is not released in a 

timely manner 

Request backlog, 
service unavailable 

4. Database Performance Optimization Technology Strategy 
4.1. Structured Optimization and Query Acceleration Techniques to Improve Query Efficiency 

To address common query performance bottlenecks in AI platforms, database re-
sponse efficiency can be enhanced through structural optimization and query acceleration 
techniques. Firstly, optimize the index by building joint indexes, overlay indexes, inverted 
indexes, etc., to reduce the data reading range. Secondly, by optimizing the execution of 
the query plan strategy, dynamically adjusting the order of connections, filtering positions, 
and execution methods, we can reduce the resource consumption of JOIN operations for 
connections [3]. Thirdly, with the help of materialized views and result caching mecha-
nisms, results can be calculated and cached in advance in AI tasks with stable query sce-
narios, avoiding further processing. For high concurrency queries, partition table design 
and parallel query strategy can also be used to evenly distribute the query load of large 
tables to various nodes during a large number of accesses. The combination of these tech-
nologies is beneficial in avoiding the system pressure caused by slow and complex queries, 
improving data extraction speed and system throughput. 

4.2. Optimizing Storage Structure and Hierarchical Management Strategy for Cold and Hot 
Data 

To alleviate the storage and IO bottlenecks in AI systems, it is necessary to construct 
a reasonable storage structure and implement a hierarchical management strategy for hot 
and cold data. The access frequency f (𝑖𝑖) can be used to classify data objects, where: 
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𝑓𝑓(𝑖𝑖) = 𝑛𝑛𝑖𝑖
𝑇𝑇

            （1） 

Among them, 𝑛𝑛𝑖𝑖 represents the number of times data object 𝑖𝑖 is accessed within 
time window T. If f (𝑖𝑖)>θ, the object is classified as hot data; otherwise, it is considered 
cold data, where θ represents the access frequency threshold. 

In practical systems, hot data should be prioritized for storage in SSD or memory 
cache layers to improve read and write speeds; Cold data is stored in HDD or archiving 
systems to reduce costs. Further, a layered storage model can be adopted: 

𝑆𝑆 = �𝐿𝐿1，𝐿𝐿2，. . .，𝐿𝐿𝑘𝑘}          （2） 
Among them, S is the storage system, and Lk represents the data storage area of the 

k-th layer (such as cache, main memory, disk). By employing dynamic migration mecha-
nisms and access pattern analysis, data can be intelligently moved between layers, reduc-
ing disk pressure and enhancing overall I/O performance and resource utilization. 

4.3. Strengthen the Transaction Optimization Mechanism for Concurrency Control and Re-
source Scheduling 

To address transaction conflicts and resource contention in high-concurrency AI en-
vironments, it is essential to enhance database concurrency control and resource alloca-
tion mechanisms. Firstly, through the Multi Version Concurrent Control (MVCC) mecha-
nism, version snapshots are used to achieve read-write separation, alleviate read-write 
lock conflicts, and improve transaction concurrency performance [4]. Secondly, for a large 
number of write operations, a lightweight lock mode is adopted, combined with row level 
locks and intent locks to control granularity and reduce performance consumption caused 
by lock competition. Thirdly, asynchronous submission and batch transaction processing 
can help merge small transactions, reduce the number of I/O operations, and improve 
write throughput. For resource scheduling, connection pool elastic adjustment or priority 
scheduling can be used to prevent situations where the connection pool is exhausted or 
resources are insufficient. The combination of the above methods can effectively alleviate 
data write conflicts, lock waiting, and system crashes on big data platforms, ensuring sta-
ble database operations and rapid response on big data platforms. 

5. Application Practice of Optimization Technology in Typical Scenarios of Large-
Scale AI Infrastructure 
5.1. Data Preprocessing Acceleration in AI Model Training Platform 

Data preprocessing is a crucial step in the training process of AI models, often con-
suming a significant amount of time and resources, and having a decisive impact on the 
entire training process. For large-scale datasets, traditional database queries cannot meet 
the requirements of high concurrency and low latency [5]. Partitioned table design enables 
task-level parallel data access, significantly increasing data throughput; The use of mate-
rialized views and caching techniques can reduce redundant calculation processes and 
lower the time required for queries; Using a columnar storage format improves field-level 
access efficiency and is particularly suitable for feature filtering operations; In addition, 
heterogeneous data preloading techniques enable the efficient preparation of multi-source 
data prior to merging, enhancing the stability and responsiveness of the training platform 
(Table 4). 

Table 4. Analysis of Data Preprocessing Acceleration Strategies for AI Model Training Platform. 

Serial 
Number 

optimization strat-
egy 

Application methods and 
characteristics 

Performance improvement 
performance 

1 
Partition table 

structure design 

Divide by time, task, or label 
dimension to achieve parallel 

queries 

Read efficiency increased by 
20%~50% 
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2 
Materialized views 
and intermediate 

result caching 

Cache duplicate query results 
to avoid redundant calcula-

tions 

Significant reduction in 
query latency and load re-

duction 

3 
Column based stor-
age structure opti-

mization 

Only load required fields to re-
duce irrelevant data access 

IO overhead decreases, field 
reading speed increases by 

more than 2 times 

4 
Heterogeneous 

Data Mapping and 
Preloading Strategy 

Preprocess multi-source data 
into a unified structure and 

load hotspot fields in advance 

Reduced data fusion time 
and more stable platform 

response 

5.2. High Concurrency Query Optimization in Online Inference Services 
In AI online inference services, model calls and result delivery must be completed 

within milliseconds. This requires robust high-concurrency query capabilities from the 
database system [6]. Firstly, the application of read-write separation architecture directs 
real-time inference requirements to read-only replicas, relieving the pressure on the main 
library; Secondly, multi-level caching mechanisms—such as using Redis to cache model 
features, user profiles, and precomputed results—can significantly reduce database access 
frequency; Thirdly, the application of dynamic expansion and reuse technology in con-
nection pools can avoid connection exhaustion and improve request processing capabili-
ties. Additionally, delay-tolerant algorithms and prefetching strategies allow high-fre-
quency data to be loaded in advance, further reducing response latency. For hot data, 
partitioning and local indexing can also be used to reduce query pressure. By integrating 
these methods, inference services can ensure stability and real-time performance in high 
concurrency situations, improving overall user experience and system availability (Figure 
1). 

 
Figure 1. Framework diagram of high concurrency query optimization strategy in online inference 
services. 
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5.3. Batch Write Optimization for Log and Behavioral Data Collection 
In AI infrastructure, the frequency of collecting user behavior data and system logs 

is extremely high, and the write pressure far exceeds the read demand. Without proper 
management, this may lead to write congestion, disk I/O overload, and potential data loss. 
Therefore, a batch write strategy is needed to merge small amounts of data into large 
transaction submissions, reducing write frequency and IO costs. Asynchronous write 
strategy can also decouple the collection end from the database pressure. Incoming data 
is first directed to a cache layer before being committed to the database, improving system 
responsiveness and reducing write-blocking issues. At the same time, using pre write log-
ging (WAL) and streaming write channel technology can ensure the atomicity and trace-
ability of data writing. In response to the rapid growth of logs, a combination of time 
partitioning and archiving strategies can be used to automatically archive historical logs 
to cold storage and free up the primary tablespace [7]. This approach alleviates real-time 
write load, enhances data durability, and ensures reliable and efficient behavioral data 
management for AI platforms (Table 5). 

Table 5. Analysis of Batch Writing Optimization Strategies for Log and Behavioral Data. 

Serial 
Number 

optimization 
strategy 

Technical Key Points Explana-
tion 

Performance improvement 
and advantages 

1 
Batch write 
mechanism 

Merge multiple records into one 
transaction submission to reduce 
the number of write operations 

Reduce IO frequency and 
significantly improve write 

throughput 

2 
Asynchronous 
write strategy 

Decouple the data writing pro-
cess from the main process and 

use a buffer to cache data 

Improve response speed and 
avoid blocking the main 

business process 

3 
Pre writing logs 
and streaming 

storage 

Ensure the integrity and con-
sistency of the data writing pro-

cess 

Improved data reliability for 
easy recovery from anoma-

lies 

4 
Partition and ar-
chiving strategy 

Partition storage by time or type, 
automatically archive historical 

data 

Reduce the pressure on the 
main gauge and improve 
query and write efficiency 

5.4. Model Version Management and Metadata Query Efficiency Improvement 
As AI systems continue to evolve, the number of models per version increases signif-

icantly, making it more challenging to manage associated metadata such as training pa-
rameters, data sources, and evaluation metrics. Traditional databases often suffer from 
latency fluctuations and index failures when processing small-sized, high-frequency que-
ries. To address this, graph-based data modeling is employed to manage model depend-
encies and simplify multi-level reference query paths; Additionally, constructing a dedi-
cated metadata index and tagging system enables efficient filtering by timeline, model 
type, and task scope. By integrating caching mechanisms and partitioned storage strate-
gies, query loads are reduced and model retrieval and scheduling efficiency is enhanced. 
The optimized metadata query mechanism significantly improves the traceability, audita-
bility, and maintainability of the AI platform. 

6. Conclusion 
With the continuous expansion of AI infrastructure and the increasing complexity of 

tasks, database systems play a crucial role in supporting model training, inference services, 
and data flow. However, increasing database bottlenecks—stemming from high concur-
rency, storage overload, and transactional conflicts—necessitate systematic optimization 
strategies. This article focuses on the core issues of query acceleration, hierarchical data 
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storage, and transaction scheduling in databases. A series of technical strategies were pro-
posed and validated through real-world AI application scenarios. The results demonstrate 
that targeted optimization measures significantly improve database performance and 
contribute to greater system stability and scalability. Future database optimization tech-
nologies will become more intelligent and adaptive, offering stronger support for building 
efficient and resilient AI infrastructures. 
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