
European Journal of Engineering
and Technologies

Vol. 1 No. 1 2025

Vol. 1 No. 1 (2025) 60

Article

Application of Database Performance Optimization Technol-
ogy in Large-Scale AI Infrastructure
Zhongqi Zhu 1,*

1 Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
* Correspondence: Zhongqi Zhu, Tandon School of Engineering, New York University, 6 MetroTech Center,

Brooklyn, NY, 11201, USA

Abstract: Large-scale AI infrastructure presents significant challenges to database systems, particu-
larly in managing high concurrency, minimizing response latency, and ensuring high availability.
This article focuses on addressing three critical performance bottlenecks: query efficiency, storage
I/O throughput, and concurrency control mechanisms. To tackle these challenges, we propose a
comprehensive suite of performance acceleration techniques, including structural reconstruction of
database schemas, hierarchical layering of hot and cold data to optimize access patterns, and ad-
vanced transaction scheduling strategies to reduce conflicts and improve throughput. These opti-
mization methods are rigorously validated through application in representative AI scenarios such
as large-scale model training and real-time online inference services. Experimental results demon-
strate that the integrated optimization framework significantly enhances database performance,
providing more robust and scalable data support for complex AI workloads, ultimately enabling
more efficient and reliable AI infrastructure operations.

Keywords: database performance optimization; AI infrastructure; query acceleration

1. Introduction
With the rapid advancement and widespread adoption of artificial intelligence (AI)

across diverse industries, the demand for robust and high-performance large-scale AI in-
frastructure has grown exponentially. At the core of this infrastructure lies the database
system, which serves as a fundamental backbone supporting critical AI operations such
as model training, real-time inference, and comprehensive data management. The perfor-
mance of these database systems directly influences the efficiency and scalability of AI
workloads. However, traditional database architectures face significant challenges and
inherent bottlenecks when confronted with the unique demands of AI applications, in-
cluding low query latency requirements, intense storage input/output (I/O) pressure, and
complex concurrency control under conditions of massive, heterogeneous, and frequently
interacting datasets. To effectively meet these challenges, it is imperative to develop data-
base optimization strategies that offer both strong generalizability and scalability tailored
to the specific characteristics of AI systems. This study systematically examines database
performance issues from three critical perspectives—query optimization, storage struc-
ture reconstruction, and transaction scheduling—and presents a set of practical, scalable
solutions designed to enhance the operational efficiency, responsiveness, and reliability
of databases within large-scale AI environments.

Received: 06 July 2025

Revised: 12 July 2025

Accepted: 30 July 2025

Published: 04 August 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Open Access

European Journal of Engineering and Technologies https://pinnaclepubs.com/index.php/EJET

Vol. 1 No. 1 (2025) 61

2. Characteristics of Database Applications in Large-Scale AI Infrastructure
As the central hub for data flow and task scheduling, the database system plays a

critical role across multiple stages of AI workflows, including data collection, prepro-
cessing, model development and training, online inference, and feedback integration. AI
workloads typically involve extremely high-frequency data read and write operations,
particularly during the modeling and training phases, where large volumes of feature
data must be accessed efficiently for batch processing and large-scale computation. In real-
time inference services, databases are required to deliver ultra-low latency and support
high levels of concurrent access to meet stringent performance demands. Moreover, AI
systems aggregate data from a variety of heterogeneous sources, including structured log
files, unstructured image data, and time-series sensor streams, which significantly in-
creases the complexity of data integration and necessitates highly flexible and scalable
database architectures. Concurrently, the widespread adoption of containerization and
microservices has driven database systems toward distributed, elastic, and cloud-native
deployments. Consequently, beyond traditional data storage, modern databases must of-
fer robust support for high concurrency, horizontal scalability, and advanced data analyt-
ics capabilities to effectively handle the diverse, dynamic, and complex workloads char-
acteristic of large-scale AI infrastructures [1].

3. Analysis of Database Performance Bottlenecks
3.1. Query Performance Bottlenecks: Slow Queries, Index Failures, High Join Overhead

In large-scale AI infrastructure, database query frequency is high and query perfor-
mance bottlenecks are obvious. One common problem is slow query speed in model train-
ing and online inference, which can result in significant response time delays due to com-
plex SQL statements or large amounts of data. Another major issue is index failure, often
caused by field type mismatches, nested functions, or uneven data distribution. These fac-
tors can force the database to perform full table scans, significantly increasing system load.
Thirdly, in AI application environments, it is often necessary to perform multi table JOIN
to integrate feature data. If the join order is poorly planned and indexing is inadequate,
the consumption of computational resources and memory will increase significantly (Ta-
ble 1).

Table 1. Analysis of Types and Causes of Query Performance Bottlenecks.

Serial
Num-

ber

question
type

Main performance Cause analysis Typical impact

1
slow

query

Long query re-
sponse time and ex-

ecution lag

Large amount of data,
complex SQL logic, and

index misses

System delay increases,
blocking other operations

2
Index in-

valid

Query not indexed,
resulting in full ta-

ble scan

Type mismatch, nested
functions, fuzzy match-
ing, skewed data distri-

bution

Low query efficiency, in-
creased CPU and IO re-

source usage

3

JOIN has
high
over-
head

Multiple table asso-
ciations cause

memory overflow
or response timeout

Related fields not in-
dexed, imbalanced data
volume, connection or-
der and algorithm not

optimized

The execution efficiency
of the query plan is low,
and the system through-
put capacity is reduced

European Journal of Engineering and Technologies https://pinnaclepubs.com/index.php/EJET

Vol. 1 No. 1 (2025) 62

3.2. Storage and IO Bottleneck: High Disk Load, Failure to Separate Hot and Cold Data
In large-scale AI systems, storage and I/O performance often become critical bottle-

necks that directly impact the responsiveness, scalability, and stability of the entire plat-
form. The first and most prominent challenge is high disk load. As AI platforms continu-
ously ingest and process massive volumes of data—including training datasets, system
logs, feature stores, and intermediate computation results—disk I/O frequently operates
under high saturation. This persistent strain can lead to elevated read/write latency, in-
creased data access contention, and even system stalls under peak workloads.

The second bottleneck involves the failure to separate hot and cold data effectively.
AI systems typically maintain a mix of real-time operational data—such as user interac-
tion logs or updated model parameters—and large repositories of historical or infre-
quently accessed data. Without a hierarchical or tiered storage strategy to distinguish be-
tween high-frequency (hot) and low-frequency (cold) data, frequently accessed datasets
are forced to compete for limited I/O bandwidth alongside archival data [2]. This not only
lowers system throughput but also diminishes the efficiency of caching mechanisms and
increases memory pressure.

The third issue stems from suboptimal storage architecture, particularly when deal-
ing with heterogeneous or unstructured data types. Unstructured data such as images,
videos, and sensor signals are often stored alongside structured metadata in a monolithic
design without proper categorization, indexing, or isolation. This lack of logical and phys-
ical separation not only degrades access patterns but also intensifies I/O contention due
to fragmented storage layouts and inefficient retrieval paths.

Together, these factors severely constrain the scalability of AI infrastructure, making
it difficult to meet the latency-sensitive demands of training, inference, and real-time an-
alytics tasks. Addressing these bottlenecks requires a comprehensive redesign of the data
storage strategy, incorporating intelligent data placement, multi-tier caching, and adap-
tive I/O scheduling to better align with the workload characteristics of AI systems (Table
2).

Table 2. Analysis of Storage and IO Bottleneck Issues.

Serial
Num-

ber

question
type

Main perfor-
mance

Cause analysis Typical impact

1
Disk load
too high

IO waiting time is
long, and disk uti-
lization continues
to approach 100%

Frequent batch read and
write operations, central-
ized large file operations,

and no IO scheduling opti-
mization mechanism

Delay in query re-
sponse and decrease in
system throughput ca-

pacity

2
Cold and

hot data not
separated

High frequency
access with low
data access effi-

ciency

All data is stored uni-
formly, lacking access fre-

quency recognition and
data layering mechanism

High frequency data
access is blocked by
low-frequency data,

resulting in system in-
stability

3

Slow pro-
cessing of
unstruc-

tured data

Slow response to
reading logs, im-
ages, and model

files

No dedicated storage
strategy, incompatible

with traditional row stor-
age structure

Improved access la-
tency and reduced

data processing effi-
ciency

3.3. Concurrent Access Bottlenecks: Lock Competition, Transaction Conflict, Connection Pool
Exhaustion

In the high concurrency environment of large-scale AI tasks, database systems will
encounter serious concurrency access bottlenecks. Firstly, lock competition is severe.

European Journal of Engineering and Technologies https://pinnaclepubs.com/index.php/EJET

Vol. 1 No. 1 (2025) 63

When multiple training and inference processes need to use the same data, they will face
frequent row level and table level lock conflicts, which can cause blockages and lags, re-
sulting in serious impacts. Secondly, transaction conflicts, especially in data write inten-
sive scenarios, are evident. The backlog or conflicts of unsubmitted transactions can lead
to frequent rollback, affecting database consistency and stability. Thirdly, there is a back-
log of connection pools. Connection pool exhaustion is a common problem under high-
concurrency conditions. In microservice architectures, excessive short-lived connection
requests can quickly saturate the pool, impairing the system's ability to respond to new
requests. These overlapping issues directly limit the AI infrastructure services provided
by the database (Table 3).

Table 3. Analysis of Types and Causes of Concurrent Access Bottlenecks.

Serial
Num-

ber

question
type

Main perfor-
mance

Cause analysis Typical impact

1
lock con-
tention

Query or write re-
quest blocking,

slow transaction
execution

Multiple concurrent transac-
tions accessing the same re-

source without proper use of
lock granularity or scheduling

strategies

System latency in-
creases and re-

source utilization
efficiency decreases

2
Transaction

Conflict

Submission fail-
ure, frequent roll-

back, data con-
sistency risk

Frequent write operation con-
flicts and improper transaction

isolation level settings

Increasing pro-
cessing burden and
affecting data relia-

bility

3
Connection

pool ex-
hausted

New connection
request rejected,
system response

failed

The concurrent access count
exceeds the capacity of the

connection pool, and the con-
nection is not released in a

timely manner

Request backlog,
service unavailable

4. Database Performance Optimization Technology Strategy
4.1. Structured Optimization and Query Acceleration Techniques to Improve Query Efficiency

To address common query performance bottlenecks in AI platforms, database re-
sponse efficiency can be enhanced through structural optimization and query acceleration
techniques. Firstly, optimize the index by building joint indexes, overlay indexes, inverted
indexes, etc., to reduce the data reading range. Secondly, by optimizing the execution of
the query plan strategy, dynamically adjusting the order of connections, filtering positions,
and execution methods, we can reduce the resource consumption of JOIN operations for
connections [3]. Thirdly, with the help of materialized views and result caching mecha-
nisms, results can be calculated and cached in advance in AI tasks with stable query sce-
narios, avoiding further processing. For high concurrency queries, partition table design
and parallel query strategy can also be used to evenly distribute the query load of large
tables to various nodes during a large number of accesses. The combination of these tech-
nologies is beneficial in avoiding the system pressure caused by slow and complex queries,
improving data extraction speed and system throughput.

4.2. Optimizing Storage Structure and Hierarchical Management Strategy for Cold and Hot
Data

To alleviate the storage and IO bottlenecks in AI systems, it is necessary to construct
a reasonable storage structure and implement a hierarchical management strategy for hot
and cold data. The access frequency f (𝑖𝑖) can be used to classify data objects, where:

European Journal of Engineering and Technologies https://pinnaclepubs.com/index.php/EJET

Vol. 1 No. 1 (2025) 64

𝑓𝑓(𝑖𝑖) = 𝑛𝑛𝑖𝑖
𝑇𝑇

 （1）

Among them, 𝑛𝑛𝑖𝑖 represents the number of times data object 𝑖𝑖 is accessed within
time window T. If f (𝑖𝑖)>θ, the object is classified as hot data; otherwise, it is considered
cold data, where θ represents the access frequency threshold.

In practical systems, hot data should be prioritized for storage in SSD or memory
cache layers to improve read and write speeds; Cold data is stored in HDD or archiving
systems to reduce costs. Further, a layered storage model can be adopted:

𝑆𝑆 = �𝐿𝐿1，𝐿𝐿2，. . .，𝐿𝐿𝑘𝑘} （2）
Among them, S is the storage system, and Lk represents the data storage area of the

k-th layer (such as cache, main memory, disk). By employing dynamic migration mecha-
nisms and access pattern analysis, data can be intelligently moved between layers, reduc-
ing disk pressure and enhancing overall I/O performance and resource utilization.

4.3. Strengthen the Transaction Optimization Mechanism for Concurrency Control and Re-
source Scheduling

To address transaction conflicts and resource contention in high-concurrency AI en-
vironments, it is essential to enhance database concurrency control and resource alloca-
tion mechanisms. Firstly, through the Multi Version Concurrent Control (MVCC) mecha-
nism, version snapshots are used to achieve read-write separation, alleviate read-write
lock conflicts, and improve transaction concurrency performance [4]. Secondly, for a large
number of write operations, a lightweight lock mode is adopted, combined with row level
locks and intent locks to control granularity and reduce performance consumption caused
by lock competition. Thirdly, asynchronous submission and batch transaction processing
can help merge small transactions, reduce the number of I/O operations, and improve
write throughput. For resource scheduling, connection pool elastic adjustment or priority
scheduling can be used to prevent situations where the connection pool is exhausted or
resources are insufficient. The combination of the above methods can effectively alleviate
data write conflicts, lock waiting, and system crashes on big data platforms, ensuring sta-
ble database operations and rapid response on big data platforms.

5. Application Practice of Optimization Technology in Typical Scenarios of Large-
Scale AI Infrastructure
5.1. Data Preprocessing Acceleration in AI Model Training Platform

Data preprocessing is a crucial step in the training process of AI models, often con-
suming a significant amount of time and resources, and having a decisive impact on the
entire training process. For large-scale datasets, traditional database queries cannot meet
the requirements of high concurrency and low latency [5]. Partitioned table design enables
task-level parallel data access, significantly increasing data throughput; The use of mate-
rialized views and caching techniques can reduce redundant calculation processes and
lower the time required for queries; Using a columnar storage format improves field-level
access efficiency and is particularly suitable for feature filtering operations; In addition,
heterogeneous data preloading techniques enable the efficient preparation of multi-source
data prior to merging, enhancing the stability and responsiveness of the training platform
(Table 4).

Table 4. Analysis of Data Preprocessing Acceleration Strategies for AI Model Training Platform.

Serial
Number

optimization strat-
egy

Application methods and
characteristics

Performance improvement
performance

1
Partition table

structure design

Divide by time, task, or label
dimension to achieve parallel

queries

Read efficiency increased by
20%~50%

European Journal of Engineering and Technologies https://pinnaclepubs.com/index.php/EJET

Vol. 1 No. 1 (2025) 65

2
Materialized views
and intermediate

result caching

Cache duplicate query results
to avoid redundant calcula-

tions

Significant reduction in
query latency and load re-

duction

3
Column based stor-
age structure opti-

mization

Only load required fields to re-
duce irrelevant data access

IO overhead decreases, field
reading speed increases by

more than 2 times

4
Heterogeneous

Data Mapping and
Preloading Strategy

Preprocess multi-source data
into a unified structure and

load hotspot fields in advance

Reduced data fusion time
and more stable platform

response

5.2. High Concurrency Query Optimization in Online Inference Services
In AI online inference services, model calls and result delivery must be completed

within milliseconds. This requires robust high-concurrency query capabilities from the
database system [6]. Firstly, the application of read-write separation architecture directs
real-time inference requirements to read-only replicas, relieving the pressure on the main
library; Secondly, multi-level caching mechanisms—such as using Redis to cache model
features, user profiles, and precomputed results—can significantly reduce database access
frequency; Thirdly, the application of dynamic expansion and reuse technology in con-
nection pools can avoid connection exhaustion and improve request processing capabili-
ties. Additionally, delay-tolerant algorithms and prefetching strategies allow high-fre-
quency data to be loaded in advance, further reducing response latency. For hot data,
partitioning and local indexing can also be used to reduce query pressure. By integrating
these methods, inference services can ensure stability and real-time performance in high
concurrency situations, improving overall user experience and system availability (Figure
1).

Figure 1. Framework diagram of high concurrency query optimization strategy in online inference
services.

European Journal of Engineering and Technologies https://pinnaclepubs.com/index.php/EJET

Vol. 1 No. 1 (2025) 66

5.3. Batch Write Optimization for Log and Behavioral Data Collection
In AI infrastructure, the frequency of collecting user behavior data and system logs

is extremely high, and the write pressure far exceeds the read demand. Without proper
management, this may lead to write congestion, disk I/O overload, and potential data loss.
Therefore, a batch write strategy is needed to merge small amounts of data into large
transaction submissions, reducing write frequency and IO costs. Asynchronous write
strategy can also decouple the collection end from the database pressure. Incoming data
is first directed to a cache layer before being committed to the database, improving system
responsiveness and reducing write-blocking issues. At the same time, using pre write log-
ging (WAL) and streaming write channel technology can ensure the atomicity and trace-
ability of data writing. In response to the rapid growth of logs, a combination of time
partitioning and archiving strategies can be used to automatically archive historical logs
to cold storage and free up the primary tablespace [7]. This approach alleviates real-time
write load, enhances data durability, and ensures reliable and efficient behavioral data
management for AI platforms (Table 5).

Table 5. Analysis of Batch Writing Optimization Strategies for Log and Behavioral Data.

Serial
Number

optimization
strategy

Technical Key Points Explana-
tion

Performance improvement
and advantages

1
Batch write
mechanism

Merge multiple records into one
transaction submission to reduce
the number of write operations

Reduce IO frequency and
significantly improve write

throughput

2
Asynchronous
write strategy

Decouple the data writing pro-
cess from the main process and

use a buffer to cache data

Improve response speed and
avoid blocking the main

business process

3
Pre writing logs
and streaming

storage

Ensure the integrity and con-
sistency of the data writing pro-

cess

Improved data reliability for
easy recovery from anoma-

lies

4
Partition and ar-
chiving strategy

Partition storage by time or type,
automatically archive historical

data

Reduce the pressure on the
main gauge and improve
query and write efficiency

5.4. Model Version Management and Metadata Query Efficiency Improvement
As AI systems continue to evolve, the number of models per version increases signif-

icantly, making it more challenging to manage associated metadata such as training pa-
rameters, data sources, and evaluation metrics. Traditional databases often suffer from
latency fluctuations and index failures when processing small-sized, high-frequency que-
ries. To address this, graph-based data modeling is employed to manage model depend-
encies and simplify multi-level reference query paths; Additionally, constructing a dedi-
cated metadata index and tagging system enables efficient filtering by timeline, model
type, and task scope. By integrating caching mechanisms and partitioned storage strate-
gies, query loads are reduced and model retrieval and scheduling efficiency is enhanced.
The optimized metadata query mechanism significantly improves the traceability, audita-
bility, and maintainability of the AI platform.

6. Conclusion
With the continuous expansion of AI infrastructure and the increasing complexity of

tasks, database systems play a crucial role in supporting model training, inference services,
and data flow. However, increasing database bottlenecks—stemming from high concur-
rency, storage overload, and transactional conflicts—necessitate systematic optimization
strategies. This article focuses on the core issues of query acceleration, hierarchical data

European Journal of Engineering and Technologies https://pinnaclepubs.com/index.php/EJET

Vol. 1 No. 1 (2025) 67

storage, and transaction scheduling in databases. A series of technical strategies were pro-
posed and validated through real-world AI application scenarios. The results demonstrate
that targeted optimization measures significantly improve database performance and
contribute to greater system stability and scalability. Future database optimization tech-
nologies will become more intelligent and adaptive, offering stronger support for building
efficient and resilient AI infrastructures.

References
1. S. J. Kamatkar et al., "Database performance tuning and query optimization," in Int. Conf. Data Mining Big Data, Cham: Springer

Int. Publishing, 2018, pp. 1, doi: 10.1007/978-3-319-93803-5_1.
2. S. Huang et al., "Survey on performance optimization for database systems," Sci. China Inf. Sci., vol. 66, no. 2, p. 121102, 2023,

doi: 10.1007/s11432-021-3578-6.
3. S. Yang, “The Impact of Continuous Integration and Continuous Delivery on Software Development Efficiency”, J. Comput.

Signal Syst. Res., vol. 2, no. 3, pp. 59–68, Apr. 2025, doi: 10.71222/pzvfqm21.
4. H. Ledford, "Social scientists battle bots to glean insights online," Nature, vol. 578, p. 6, 2020. doi: 10.1038/d41586-020-00141-1.
5. A. Kaun and M. Männiste, "Public sector chatbots: AI frictions and data infrastructures at the interface of the digital welfare

state," New Media Soc., vol. 27, no. 4, pp. 1962–1985, 2025, doi: 10.1177/14614448251314394.
6. F. Gao, “The Role of Data Analytics in Enhancing Digital Platform User Engagement and Retention”, J. Media Journal. Commun.

Stud., vol. 1, no. 1, pp. 10–17, Apr. 2025, doi: 10.71222/z27xzp64.
7. J. Wang et al., "An optimized RDMA QP communication mechanism for hyperscale AI infrastructure," Cluster Comput., vol. 28,

no. 1, pp. 66, 2025, doi: 10.1007/s10586-024-04796-7.

Disclaimer/Publisher’s Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s)
and contributor(s) and do not necessarily reflect the views of PAP and/or the editor(s). PAP and/or the editor(s) disclaim any respon-
sibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in
the content.

https://doi.org/10.1007/978-3-319-93803-5_1
https://doi.org/10.1007/s11432-021-3578-6
https://doi.org/10.71222/pzvfqm21
https://doi.org/10.1038/d41586-020-00141-1
https://doi.org/10.1177/14614448251314394
https://doi.org/10.71222/z27xzp64
https://doi.org/10.1007/s10586-024-04796-7

	1. Introduction
	2. Characteristics of Database Applications in Large-Scale AI Infrastructure
	3. Analysis of Database Performance Bottlenecks
	3.1. Query Performance Bottlenecks: Slow Queries, Index Failures, High Join Overhead
	3.2. Storage and IO Bottleneck: High Disk Load, Failure to Separate Hot and Cold Data
	3.3. Concurrent Access Bottlenecks: Lock Competition, Transaction Conflict, Connection Pool Exhaustion

	4. Database Performance Optimization Technology Strategy
	4.1. Structured Optimization and Query Acceleration Techniques to Improve Query Efficiency
	4.2. Optimizing Storage Structure and Hierarchical Management Strategy for Cold and Hot Data
	4.3. Strengthen the Transaction Optimization Mechanism for Concurrency Control and Resource Scheduling

	5. Application Practice of Optimization Technology in Typical Scenarios of Large-Scale AI Infrastructure
	5.1. Data Preprocessing Acceleration in AI Model Training Platform
	5.2. High Concurrency Query Optimization in Online Inference Services
	5.3. Batch Write Optimization for Log and Behavioral Data Collection
	5.4. Model Version Management and Metadata Query Efficiency Improvement

	6. Conclusion
	References

