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Abstract: The democratization of remote sensing data presents a transformative opportunity for 

Small and Medium Businesses (SMBs), yet the adoption of automated interpretation tools is 

hindered by the "black box" nature of current Vision-Language Models (VLMs). Standard models 

frequently exhibit overconfidence in ambiguous scenarios, posing financial risks for applications in 

precision agriculture and logistics. This paper introduces SentiMap, an uncertainty-aware image 

captioning framework that disentangles aleatoric and epistemic uncertainty through a dual-stream 

Bayesian architecture. We propose a novel Adaptive Fusion Mechanism that dynamically re-

weights visual representations based on spatial variance maps, prioritizing semantic priors when 

image quality degrades. Extensive experiments on the RSICD dataset and a curated "SMB-Risk" 

benchmark demonstrate that SentiMap achieves state-of-the-art calibration (ECE: 0.05) without 

compromising captioning accuracy. User studies confirm that providing interpretable "Trust 

Scores" and uncertainty heatmaps significantly enhances human decision confidence, bridging the 

gap between raw pixel data and actionable business intelligence. 

Keywords: remote sensing captioning; uncertainty quantification; vision-language fusion; 

Explainable AI (XAI); Bayesian Deep Learning; decision support systems 

 

1. Introduction 

1.1. Background: The Democratization of Remote Sensing (RS) Data for SMBs 

The proliferation of commercial satellite constellations (e.g., Planet, Sentinel, Maxar) 
has drastically reduced the cost and latency of acquiring high-resolution Earth 

observation data. Historically, Remote Sensing (RS) was the exclusive domain of 
government agencies and large multinational corporations with the budget for specialized 

analysts. Today, Small and Medium Businesses (SMBs) in sectors such as precision 
agriculture, logistics, and real estate development increasingly rely on RS data to drive 
critical operations. For an agricultural SMB, timely satellite imagery can dictate harvest 

schedules; for a logistics firm, it can verify site accessibility or construction progress. 
However, the raw data volume is overwhelming, creating an urgent need for automated 

interpretation tools-specifically, Remote Sensing Image Captioning (RSIC)-that can 
translate complex pixel data into actionable natural language descriptions [1]. 
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1.2. Problem Statement: The "Black Box" Trust Issue 

While recent advancements in Vision-Language Models (VLMs) have enabled 
impressive automated captioning, a critical gap remains: trustworthiness. Standard deep 

learning models operate as "black boxes," providing deterministic outputs without 
indicating their confidence level. In the context of RS, this is dangerous. A standard VLM 

might label a hazy, cloud-obscured region as "a calm body of water" or "a paved parking 
lot" with equal assertiveness, despite the visual evidence being ambiguous [2]. 

For an SMB owner making a financial decision-such as approving a loan based on 

land development status or purchasing crop insurance-an incorrect caption can lead to 
significant monetary loss. The core problem is that current State-of-the-Art (SOTA) 

models optimize solely for caption accuracy metrics (like BLEU or CIDEr) while 
neglecting uncertainty quantification. They fail to communicate when and why they 
might be wrong, rendering them unsuitable for high-stakes commercial decision support. 

1.3. Objective 

The primary objective of this research is to bridge the gap between high-performance 
AI and reliable decision support systems. We propose an Explainable Remote Sensing 
Image Captioning Framework that integrates uncertainty quantification directly into the 

vision-language feature fusion process. 
Specifically, this study aims to: 

Develop a dual-stream architecture that estimates both aleatoric uncertainty (inherent 
noise in the image, e.g., shadows, clouds) and epistemic uncertainty (model limitations). 

Design a novel "Uncertainty-Aware Fusion Mechanism" that dynamically adjusts the 
model's attention. If visual uncertainty is high (e.g., heavy fog), the model should weigh 
visual features less and rely more on learned language priors or explicitly flag the 

ambiguity. 
Validate the system's utility for SMBs through a "Trust Score" metric that correlates 

model confidence with caption accuracy [3]. 

1.4. System Architecture 

The proposed solution departs from traditional encoder-decoder pipelines by 
introducing uncertainty as a first-class citizen in the feature extraction phase. As 

illustrated in Figure 1 below, the architecture consists of three main components: a 
Bayesian CNN/ViT encoder for visual feature extraction, a probabilistic language decoder, 
and the central Fusion Module. This module acts as a gatekeeper, filtering out unreliable 

features before the final caption is generated [4]. 

 
Figure 1. Overall System Architecture for Uncertainty-Aware RS Captioning. 
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2. Related Work 

2.1. Remote Sensing Image Captioning: From Templates to Transformers 

Remote Sensing Image Captioning (RSIC) has evolved significantly over the past 
decade, mirroring advancements in the broader field of computer vision. Early 

approaches primarily relied on template-based methods, where predefined grammatical 
slots were filled with detected object keywords (e.g., "A [number] of [objects] are in the 
[location]"). While interpretable, these systems lacked syntactic flexibility and often failed 

to capture complex spatial relationships inherent in aerial imagery, such as "a residential 
area adjacent to a dense forest." 

The introduction of the Encoder-Decoder architecture marked a turning point. 
Seminal works utilized Convolutional Neural Networks (CNNs) like VGG or ResNet as 
encoders to extract high-level feature maps, paired with Recurrent Neural Networks 

(RNNs) or Long Short-Term Memory (LSTM) networks as decoders to generate fluid 
sentences. Despite their success, these models struggle with the unique challenges of RS 

data: high object density, arbitrary orientation, and significant scale variation. More 
recently, the field has shifted towards Transformer-based architectures. By leveraging 
self-attention mechanisms, models can capture long-range dependencies across large 

satellite scenes more effectively than CNNs. However, these improvements have largely 
focused on boosting metric scores (BLEU, METEOR) rather than enhancing the reliability 

or transparency of the output [5]. 

2.2. Vision-Language Models (VLMs): The Rise of Multimodality 

In the general domain, Vision-Language Models (VLMs) like CLIP (Contrastive 
Language-Image Pre-training) and BLIP (Bootstrapping Language-Image Pre-training) 

have set new benchmarks for zero-shot performance. These foundational models learn a 
shared latent space for images and text, allowing for robust retrieval and generation tasks. 

Extensions into the geospatial domain, such as RemoteCLIP and GeoChat, have 
demonstrated that fine-tuning these large-scale models on RS datasets (like RSICD or 
UCM-Captions) yields superior descriptive capabilities. 

However, a critical limitation of Large Multimodal Models (LMMs) is their tendency 
to hallucinate-generating plausible-sounding but factually incorrect descriptions. In a 

commercial context, this "plausibility over truth" optimization is hazardous. For instance, 
an LMM might confidently describe a brown, fallow field as "arid wasteland" or 
"construction preparation" based on subtle texture biases, without any internal 

mechanism to flag the ambiguity. While these models excel at fluency, their lack of 
introspection regarding their own knowledge gaps makes them unreliable "black boxes" 

for decision support [6]. 

2.3. Uncertainty Quantification in Deep Learning 

Uncertainty Quantification (UQ) provides a mathematical framework to assess 
confidence in model predictions. It is generally categorized into two types: 

Aleatoric Uncertainty: Arises from inherent noise in the data itself. In satellite 
imagery, this includes atmospheric interference (haze, clouds), sensor noise, or low 

resolution. This uncertainty is irreducible but can be learned. 
Epistemic Uncertainty: Arises from the model's lack of knowledge, often due to 

insufficient training data in certain domains (e.g., rare industrial equipment types). This 

can be reduced with more data. 
Techniques such as Bayesian Neural Networks (BNNs) and Monte Carlo (MC) 

Dropout approximate these uncertainties by treating network weights as distributions 
rather than fixed values. By running multiple forward passes during inference, one can 
calculate the variance of the predictions as a proxy for uncertainty. While widely adopted 

in medical imaging and autonomous driving, UQ remains underexplored in RS 
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captioning. Current RSIC models rarely output a confidence interval alongside their text, 
leaving end-users to guess the reliability of the generated report [7]. 

2.4. Comparison of Existing Approaches 

The gap in current research is the misalignment between model capability and user 
requirements in the SMB sector. Existing systems optimize for descriptive richness but fail 

to provide the safety rails necessary for financial or operational decisions. 
Table 1 summarizes this landscape. Traditional CNN-RNN models offer low 

computational cost but poor generalization. Modern Transformer-based VLMs offer high 

accuracy but suffer from "overconfidence" and opacity. Our proposed approach creates a 
hybrid category: maintaining the high accuracy of Transformers while integrating the 

probabilistic rigor of Bayesian methods to deliver a "Trust Score" essential for business 
logic. 

Table 1. Comparison of State-of-the-Art RS Captioning Models vs. Proposed Method. 

Model Type Approach Core Architecture Uncertainty Aware? SMB Suitability 

Standard CNN-

RNN 

ResNet/VGG 

+ LSTM 
Deterministic No Low (Black Box) 

Transformer-

based 

ViT + GPT / 

BERT 

High-capacity 

Transformer 
No (Overconfident) 

Medium 

(Accurate but 

Opaque) 

Proposed 

Method 

Bayesian 

CNN + Fusion 

Probabilistic CNN + 

Multimodal Fusion 

Yes (Aleatoric + 

Epistemic) 

High (Trust 

Scores) 

3. Methodology: Uncertainty-Aware Vision-Language Fusion 

3.1. Overview: Dual-Stream Uncertainty Estimation 

To achieve reliable and explainable captioning, we propose a novel Uncertainty-
Aware Vision-Language Framework. Unlike traditional "black box" end-to-end models, 

our architecture explicitly decouples feature extraction into two parallel streams: a Visual 
Stream responsible for processing pixel data and quantifying aleatoric uncertainty (data 
noise), and a Semantic Stream responsible for retrieving linguistic attributes and 

quantifying epistemic uncertainty (model knowledge gaps). These streams converge in an 
Adaptive Fusion Module, which acts as a confidence-based gatekeeper before the final 

decoding stage [8]. 

3.2. Visual Encoder with Aleatoric Uncertainty 

The visual backbone is based on a modified ResNet-101 or Vision Transformer (ViT) 
architecture. In standard networks, the output of the final convolutional layer is a 

deterministic feature map f(x). In our proposed Probabilistic Visual Encoder, we modify 
the final layer to predict a distribution rather than a point estimate. 

Specifically, for each region in the input image, the network outputs both a mean 

feature vector μ and a variance vector σ². The variance vector captures heteroscedastic 
aleatoric uncertainty-uncertainty that varies depending on the input data. For example, a 

region covered by heavy cloud or deep shadow will generate a high σ² value, effectively 
signaling to the downstream modules that the visual information in this specific area is 
noisy and unreliable. This allows the system to distinguish between a "clear swimming 

pool" (low variance) and "ambiguous blue pixel blob" (high variance). 

3.3. The Adaptive Fusion Module 

The core contribution of this work is the Adaptive Fusion Module, illustrated in 

Figure 2. In conventional multi-modal fusion, visual and semantic features are often 
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concatenated or summed with fixed weights. This is suboptimal for RS imagery where 
visual quality fluctuates significantly (e.g., due to seasonality or atmospheric conditions). 

Our module implements a gating mechanism defined by: 

Gate α = Sigmoid (W_u * σ² + b_u) 

 

Figure 2. Schematic of the Uncertainty-Aware Adaptive Fusion Module. 

Here, σ² is the uncertainty map from the visual encoder. The gate α (ranging from 0 
to 1) dynamically controls the information flow. When the visual uncertainty σ² is high, α 

approaches 0, suppressing the noisy visual features. Simultaneously, the model increases 
the weight of the Semantic Stream (prior knowledge), ensuring the caption remains 

structurally sound even if the image is degraded. This mechanism effectively prevents the 
model from "hallucinating" details in noisy regions, forcing it to fall back on safer, more 
general descriptions when confidence is low. 

3.4. Language Decoder and Trust Score Generation 

The final fused representation is fed into an LSTM-based or Transformer decoder to 
generate the caption sequence. To estimate the overall Trust Score for the SMB user, we 

employ Monte Carlo (MC) Dropout during the inference phase. By running the decoder 
multiple times (e.g., N=10) with random dropout masks, we obtain a distribution of 
possible captions. The variance across these generated captions serves as a proxy for the 

model's overall confidence. 
The final output presented to the user includes: 

1) The Most Probable Caption: The standard descriptive text. 
2) Visual Confidence Heatmap: A spatial overlay derived from the inverse of the 

uncertainty map σ², highlighting which parts of the image the model "trusted" 

the most. 
3) Global Trust Score: A normalized percentage (0-100%) derived from the fusion 

of aleatoric and epistemic uncertainty metrics, giving the SMB owner an 
immediate "Go/No-Go" signal for decision making. 

4. Dataset and Experimental Setup 

4.1. Datasets: Benchmarking and Custom SMB-Centric Curation 

To rigorously evaluate the proposed framework, we utilize two widely recognized 

benchmark datasets and introduce a custom dataset specifically designed to test 
uncertainty quantification in commercial scenarios. 

1) UCM-Captions: Derived from the UC Merced Land Use Dataset, this collection 

contains 2,100 high-resolution aerial images covering 21 classes (e.g., 
agricultural, harbor, dense residential). While useful for baseline training, the 

images are generally clear and lack the noise typical of operational satellite feeds. 
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2) RSICD (Remote Sensing Image Captioning Dataset): A larger-scale dataset with 
10,921 images and high diversity, ranging from deserts to industrial centers. 

This serves as our primary training corpus for general feature learning. 
3) SMB-Risk (Custom Dataset): To address the "Black Box" problem, we curated a 

specialized test set of 500 images. Unlike standard benchmarks, these images 
were selected for their ambiguity. They include scenes with partial cloud cover, 
seasonal crop variations, heavy shadows in urban canyons, and low-resolution 

sensor artifacts. This dataset is crucial for validating whether our model 
correctly lowers its "Trust Score" when facing low-quality data. 

4.2. Dataset Statistics 

A detailed statistical breakdown is provided in Table 2. We follow standard data 
splitting protocols: 80% for training, 10% for validation, and 10% for testing for the public 
datasets. For our custom SMB-Risk dataset, we reserve it entirely for zero-shot uncertainty 

evaluation to test the model's robustness in unseen, adverse conditions. Each image in 
these datasets is paired with 5 diverse sentences to prevent overfitting to a specific 

grammatical structure. 

Table 2. Statistical Summary of Training and Validation Datasets. 

Dataset Total Images Sentences/Img Vocab Size Domain Focus 

UCM-Captions 2,100 5 ~3,500 General Scenes (Urban/Rural) 

RSICD 10,921 5 ~11,000 High Diversity / Complex 

SMB-Risk 

(Ours) 
500 5 ~800 High Ambiguity / Financial 

4.3. Implementation Details 

The framework is implemented using PyTorch on a cluster of NVIDIA A100 GPUs. 
1) Visual Backbone: We employ a ResNet-101 pre-trained on the MillionAID 

dataset to ensure robust extraction of remote sensing features. The final fully 
connected layer is replaced with a variational layer that outputs mean and 
variance vectors. 

2) Language Decoder: The decoder is a single-layer LSTM with a hidden state size 
of 512. We prefer LSTM over heavy Transformer decoders for the final stage to 

maintain low latency for real-time SMB applications, although the visual 
encoder can be swapped for a ViT. 

3) Training Protocol: The model is trained for 100 epochs using the Adam 

optimizer. We employ a "warm-up" learning rate schedule, starting at 1e-4 and 
decaying by a factor of 0.8 every 10 epochs. To ensure the uncertainty estimates 

are meaningful, we include a KL-divergence regularization term in the loss 
function, preventing the predicted variance from collapsing to zero. 

4.4. Evaluation Metrics 

We evaluate performance using two distinct sets of metrics:  

1) Caption Quality (Standard): We report BLEU-1 through BLEU-4, METEOR, 
ROUGE-L, and CIDEr. These metrics measure the n-gram overlap between the 

generated caption and the ground truth references. 
2) Uncertainty Calibration (Novel): To validate the decision-support capability, we 

introduce the Expected Confidence Error (ECE) and the Trust-Accuracy 

Correlation (TAC). The TAC metric measures how well the model's predicted 
"Trust Score" correlates with the actual caption quality (CIDEr score). A high 

positive correlation indicates that the model successfully "knows when it 
doesn't know," flagging poor outputs to the user effectively (Table 2). 
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5. Results and Analysis 

5.1. Quantitative Performance 

We evaluated our proposed Uncertainty-Aware Framework against several baselines 
on the RSICD test set. The results are summarized in Table 3. 

Table 3. Performance Benchmarking on RSICD Test Set. 

Model Backbone BLEU-4 CIDEr SPICE ECE (↓) 

CNN-RNN (Lu et al.) VGG-16 38.2 1.95 14.3 0.24 

GeoChat (SOTA) LLaMA-2 + ViT 52.1 2.84 19.2 0.18 

SentiMap (Ours) Bayesian ResNet 51.4 2.76 18.9 0.05 

In terms of standard captioning metrics (BLEU-4 and CIDEr), our model achieves 

performance comparable to the current State-of-the-Art (SOTA) "GeoChat" model (BLEU-
4: 51.4 vs 52.1). This indicates that introducing the probabilistic bottleneck does not 

significantly degrade the descriptive quality of the captions for clear images. However, 
the crucial differentiator is the Expected Confidence Error (ECE). 

Standard models like the CNN-RNN baseline and even advanced Transformers often 

exhibit high ECE scores (0.18 - 0.24), meaning they are highly overconfident-often 
assigning >90% probability to incorrect predictions. Our method achieves a significantly 

lower ECE of 0.05. This demonstrates that our model's "Trust Score" aligns closely with 
the actual probability of the caption being correct, a critical requirement for financial 
decision support. 

5.2. Uncertainty Calibration 

Figure 3 visualizes this improvement using Reliability Diagrams. The diagonal 
dotted line represents perfect calibration. The red curve (Baseline) bows significantly 
above the diagonal, illustrating the "Black Box" problem where the model claims high 

confidence even when its accuracy drops. In contrast, the green curve (Ours) hugs the 
diagonal, confirming that when our model reports a "Low Trust Score," the output is 

indeed likely to be inaccurate. This calibration empowers SMB owners to safely automate 
high-confidence tasks while flagging low-confidence results for human review. 

 

Figure 3. Performance Benchmarking on RSICD Test Set. 

5.3. Ablation Study 

To verify the contribution of individual components, we conducted an ablation study. 
Removing the Visual Uncertainty Stream (falling back to a deterministic ResNet) caused 

the ECE to triple, reverting to standard overconfident behavior. Removing the Adaptive 
Fusion Gate resulted in a 4% drop in CIDEr scores on noisy images (from the SMB-Risk 
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dataset), as the model tried to "force" descriptions of occluded features rather than relying 
on semantic priors (Table 3). 

6. Case Studies for SMB Decision Support 

6.1. Scenario A: Agricultural Monitoring 

Consider a small crop insurance firm monitoring soybean fields. In a test case 
involving partial cloud cover, a standard VLM generated the caption: "A healthy green 
soybean field ready for harvest." (Confidence: Implicitly High). 

In contrast, our system output: "A field with vegetation, likely crops, but significantly 
obscured by atmospheric haze." The system attached a Trust Score of 45% and highlighted 

the cloud edges in the uncertainty heatmap (see Figure 4). 

 

Figure 4. Qualitative Results - Attention Maps & Uncertainty Heatmaps. 

Decision Impact: The standard model would have led to an automated (and 
potentially incorrect) payout calculation. Our system's low trust score automatically 
triggered a "Request On-Site Drone Inspection" workflow, saving the firm from a liability 

risk. 

6.2. Scenario B: Logistics Site Selection 

A logistics SMB analyzed a remote site for a potential warehouse. The satellite image 

contained a dark, linear feature. Standard models labeled it "a paved road." Our model 
detected high aleatoric uncertainty due to the texture ambiguity (shadow vs. asphalt) and 
output: "A linear feature, possibly a road or a drainage canal." 

Decision Impact: Relying on the standard model could have resulted in purchasing 
land inaccessible to trucks. The uncertainty flag prompted the user to verify against 

cadastral maps, revealing it was indeed a canal. 

6.3. User Study Results 

We conducted a user study with 50 SMB owners (farmers, insurers, developers). 
Participants were asked to make "Invest/No-Invest" decisions based on model outputs. As 

shown in Figure 5, access to the "Trust Score" and "Uncertainty Factors" significantly 
increased Decision Confidence (from 3.0 to 4.5 on a Likert scale) and improved Risk 
Assessment accuracy. Users reported that knowing why the model was uncertain (e.g., 

"Haze" vs "Unknown Object") was as valuable as the caption itself (Figure 5). 
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Figure 5. SMB User Study Results (N=50 Participants). 

7. Conclusion and Future Work 

7.1. Summary of Contributions 

This research addresses the critical "trust gap" preventing the widespread adoption 

of automated Remote Sensing analysis in the SMB sector. We introduced SentiMap, a 
novel framework that fuses Bayesian uncertainty estimation with Vision-Language 
Models. 

Key contributions include: 
1) Quantification: Successfully disentangled aleatoric (data) and epistemic (model) 

uncertainty in satellite imagery. 
2) Adaptation: A new Fusion Module that dynamically re-weights visual vs. 

semantic information based on image quality. 

3) Application: Demonstrated through rigorous testing and user studies that 
"Trust Scores" significantly enhance commercial decision-making workflows. 

7.2. Limitations 

The primary limitation is computational overhead. The Bayesian approach (using 
Monte Carlo Dropout) requires multiple forward passes (N=10 to 50) during inference, 
increasing latency by approximately 5x compared to deterministic models. While 

acceptable for batch processing in insurance or agriculture, this may be too slow for real-
time disaster response applications. Additionally, the quality of epistemic uncertainty 

estimation is heavily dependent on the diversity of the training data. 

7.3. Future Directions 

Future work will focus on: 
1) Temporal Analysis: Extending the framework to time-series data to quantify 

uncertainty in change detection (e.g., "Is this deforestation or seasonal leaf 
drop?"). 

2) Efficiency: Investigating "Evidential Deep Learning" techniques to estimate 

uncertainty in a single forward pass, reducing the computational burden. 
3) Interactive Calibration: Developing a "Human-in-the-Loop" fine-tuning system 

where SMB users can correct the model, progressively reducing epistemic 
uncertainty for their specific domain. 
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