Vision-Based AI Solutions for Human Life and Social Science: From Image Processing to Human Behavior Modeling

Authors

  • W. A. Jarvis Department of Computer Science, Australian National University, Canberra, Australia Author

DOI:

https://doi.org/10.71222/pgdch948

Keywords:

social science, computer vision, pattern recognition, artificial intelligence

Abstract

Artificial Intelligence (AI) has become a transformative force in social science research, enabling the analysis of large-scale, heterogeneous data to uncover latent patterns and predict complex human behaviors. Among AI’s core methodologies, computer vision has evolved far beyond its early role in data acquisition to now encompass sophisticated systems capable of interpreting, analyzing, and synthesizing visual information across a range of socially relevant contexts. By integrating advanced image processing, machine learning, and computer graphics, computer vision empowers interdisciplinary investigations in psychology, sociology, and economics, modeling phenomena such as decision-making, emotional expression, and social interaction at unprecedented scales and resolutions. This paper presents a comprehensive survey of the state of the art in computer vision applications within the social sciences, with particular emphasis on recent breakthroughs in algorithms and enabling technologies that facilitate automated visual understanding. Key topics include object detection, facial recognition, scene understanding, and predictive modeling, which collectively underpin impactful applications in healthcare, autonomous systems, surveillance, and digital media. To structure this rapidly expanding domain, we propose a conceptual framework that organizes the field into four foundational pillars: image processing, object recognition, adaptive machine learning, and computer graphics. Each pillar contributes critical capabilities such as feature extraction, quality enhancement, semantic interpretation, and photorealistic rendering — functions that are increasingly pivotal in addressing contemporary social challenges. By critically evaluating current methodologies, benchmarking performance across domains, and identifying emergent trends, this work not only synthesizes existing knowledge but also outlines promising directions for future research at the intersection of AI and social science. Finally, we highlight how these advancements are reshaping societal norms and enabling AI-driven solutions to pressing global issues, from autonomous navigation to public health and beyond.

References

1. Y. Wang, Y. Guo, R. Kumar, and M. Swaminathan, “Order reduction using Laguerre-FDTD with embedded neural network,” in Proc. IEEE/MTT-S Int. Microw. Symp. (IMS), 2024, pp. 473–476, doi: 10.1109/IMS40175.2024.10600239.

2. Z. An, G. Sun, Y. Liu, R. Li, M. Wu, M.-M. Cheng, E. Konukoglu, and S. Belongie, “Multimodality helps few-shot 3D point cloud semantic segmentation,” arXiv Prepr. arXiv:2410.22489, 2024, doi: 10.48550/arXiv.2410.22489.

3. R. Li, J. Han, L. Melas-Kyriazi, C. Sun, Z. An, Z. Gui, S. Sun, P. Torr, and T. Jakab, “DreamBeast: Distilling 3D fantastical animals with part-aware knowledge transfer,” arXiv Prepr. arXiv:2409.08271, 2024, doi: 10.48550/arXiv.2409.08271.

4. Y. Guo, X. Jia, X. Li, Y. Wang, R. Kumar, R. Sharma, and M. Swaminathan, “Extrapolation with range determination of 2D spectral transposed convolutional neural network for advanced packaging problems,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 13, no. 10, pp. 1533–1544, 2023, doi: 10.1109/TCPMT.2023.3317851.

5. R. Li, S. Sun, M. Elhoseiny, and P. Torr, “OxfordTVG-HIC: Can machine make humorous captions from images?,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), 2023, pp. 20293–20303, doi: 10.1109/ICCV51070.2023.01856.

6. X. Chen, K. He, W. Liu, X. Liu, Z.-J. Zha, and T. Mei, “CLaM: An open-source library for performance evaluation of text-driven human motion generation,” in Proc. ACM Int. Conf. Multimedia (ACM MM), 2024, pp. 11194–11197, doi: 10.1145/3664647.3685523.

7. X. Chen, W. Liu, X. Liu, Y. Zhang, and T. Mei, “A cross-modality and progressive person search system,” in Proc. ACM Int. Conf. Multimedia (ACM MM), 2020, pp. 4550–4552, doi: 10.1145/3394171.3414455.

8. X. Chen, X. Liu, K. Liu, W. Liu, and T. Mei, "A baseline framework for part-level action parsing and action recognition," arXiv preprint arXiv:2110.03368, 2021, doi: 10.48550/arXiv.2110.03368.

9. X. Chen, X. Liu, W. Liu, K. Liu, D. Wu, Y. Zhang, and T. Mei, "Part-level action parsing via a pose-guided coarse-to-fine framework," in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2022, pp. 419–423, doi: 10.1109/ISCAS48785.2022.9937498.

10. W. Wang, Y. Sun, Z. Yang, Z. Hu, Z. Tan, and Y. Yang, "Replication in visual diffusion models: A survey and outlook," arXiv preprint arXiv:2408.00001, 2024, doi: 10.48550/arXiv.2408.00001.

11. X. Chen and X. Di, "Ridesharing user equilibrium with nodal matching cost and its implications for congestion tolling and platform pricing," Transp. Res. Part C Emerg. Technol., vol. 129, p. 103233, 2021, doi: 10.1016/j.trc.2021.103233.

12. X. Chen and X. Di, "A network equilibrium model for integrated shared mobility services with ride-pooling," Transp. Res. Part C Emerg. Technol., vol. 167, p. 104837, 2024, doi: 10.1016/j.trc.2024.104837.

13. C. Zhang, X. Chen, and X. Di, "Stochastic semi-gradient descent for learning mean field games with population-aware function approximation," arXiv preprint arXiv:2408.08192, 2024, doi: 10.48550/arXiv.2408.08192.

14. Q. Jin, X. Chen, W. Liu, T. Mei, and Y. Zhang, "T-SVG: Text-driven stereoscopic video generation," arXiv preprint arXiv:2412.09323, 2024, doi: 10.48550/arXiv.2412.09323.

15. M. Yin, "Multimedia authentication for copyright protection," IOP Conf. Ser. Earth Environ. Sci., IOP Publishing, 2017, p. 012160, doi: 10.1088/1755-1315/69/1/012160.

16. Y. Deng, S. Shao, A. Mittal, R. Twumasi-Boakye, J. Fishelson, A. Gupta, and N. B. Shroff, "Incentive design and profit sharing in multi-modal transportation networks," Transp. Res. Part B Methodol., vol. 163, pp. 1–21, 2022, doi: 10.1016/j.trb.2022.06.011.

17. Y. Hu, M. Yin, M. Mezzavilla, H. Guo, and S. Rangan, "Channel modeling for FR3 upper mid-band via generative adversarial networks," in Proc. 2024 IEEE 25th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Sep. 2024, pp. 776–780, doi: 10.1109/SPAWC60668.2024.10693976.

18. Y. Hu, M. Yin, S. Rangan, and M. Mezzavilla, "Parametrization and estimation of high-rank line-of-sight MIMO channels with reflected paths," IEEE Trans. Wireless Commun., 2023, doi: 10.1109/TWC.2023.3311735.

19. Y. Hu, M. Yin, S. Rangan, and M. Mezzavilla, "Parametrization of high-rank line-of-sight MIMO channels with reflected paths," in Proc. IEEE 23rd Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), 2022, pp. 1–5, doi: 10.1109/SPAWC51304.2022.9833962.

20. M. Qu, X. Chen, W. Liu, A. Li, and Y. Zhao, "ChatVTG: Video temporal grounding via chat with video dialogue large language models," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 2024, pp. 1847–1856, doi: 10.1109/CVPRW63382.2024.00191.

21. L. Yang, Z. Zhang, J. Han, B. Zeng, R. Li, P. Torr, and W. Zhang, "Semantic score distillation sampling for compositional text-to-3D generation," arXiv preprint arXiv:2410.09009, 2024, doi: 10.48550/arXiv.2410.09009.

22. Z. Gui, S. Sun, R. Li, J. Yuan, Z. An, K. Roth, A. Prabhu, and P. Torr, "kNN-CLIP: Retrieval enables training-free segmentation on continually expanding large vocabularies," arXiv preprint arXiv:2404.09447, 2024, doi: 10.48550/arXiv.2404.09447.

23. B. Wang, H. Duan, Y. Feng, X. Chen, Y. Fu, Z. Mo, and X. Di, "Can LLMs understand social norms in autonomous driving games?," arXiv preprint arXiv:2408.12680, 2024, doi: 10.1109/IAVVC63304.2024.10786452.

24. H. Liu, X. Chen, X. Liu, X. Gu, and W. Liu, "AnimateAnywhere: Context-controllable human video generation with ID-consistent one-shot learning," in Proc. 5th Int. Workshop Human-centric Multimedia Anal., 2024, pp. 41–43, doi: 10.1145/3688865.3689477.

25. Y. Mohamed, R. Li, I. S. Ahmad, K. Haydarov, P. Torr, K. W. Church, and M. Elhoseiny, "No culture left behind: ArtELingo-28, a benchmark of WikiArt with captions in 28 languages," arXiv preprint arXiv:2411.03769, 2024, doi: 10.48550/arXiv.2411.03769.

26. M. Yin, T. Li, H. Lei, Y. Hu, S. Rangan, and Q. Zhu, "Zero-shot wireless indoor navigation through physics-informed rein-forcement learning," in Proc. 2024 IEEE Int. Conf. Robot. Autom. (ICRA), 2024, pp. 5111–5118, doi: 10.1109/ICRA57147.2024.10611229.

27. K. Huang, X. Chen, X. Di, and Q. Du, "Dynamic driving and routing games for autonomous vehicles on networks: A mean field game approach," Transp. Res. Part C Emerg. Technol., vol. 128, p. 103189, 2021, doi: 10.1016/j.trc.2021.103189.

28. Y. Deng, H. Chen, S. Shao, J. Tang, J. Pi, and A. Gupta, "Multi-objective vehicle rebalancing for ridehailing system using a re-inforcement learning approach," J. Manage. Sci. Eng., vol. 7, no. 2, pp. 346–364, 2022, doi: 10.1016/j.jmse.2021.12.004.

29. Y. Deng, A. Gupta, and N. B. Shroff, "Fleet sizing and charger allocation in electric vehicle sharing systems," IFAC J. Syst. Control, vol. 22, p. 100210, 2022, doi: 10.1016/j.ifacsc.2022.100210.

30. J. Huo, H. Li, J. Roveda, S. F. Quan, and A. Li, "A multi-task deep learning algorithm for sleep stage scoring and sleep arousal detection," Authorea Preprints, 2023, doi: 10.36227/techrxiv.24078252.v1.

31. X. Chen and X. Di, "How the COVID-19 pandemic influences human mobility? Similarity analysis leveraging social media data," in Proc. 2022 IEEE 25th Int. Conf. Intell. Transp. Syst. (ITSC), 2022, pp. 2955–2960, doi: 10.1109/ITSC55140.2022.9922060.

32. H. Guo, A. B. Tikhomirov, A. Mitchell, I. P. J. Alwayn, H. Zeng, and K. C. Hewitt, "Real-time assessment of liver fat content using a filter-based Raman system operating under ambient light through lock-in amplification," Biomed. Opt. Express, vol. 13, no. 10, pp. 5231–5245, 2022, doi: 10.1364/BOE.467849.

33. H. Guo, J. Huo, and Q. Jin et al., “Liver discard rate due to conservative estimations of steatosis: An inference-based approach,” medRxiv Prepr., 2023, doi: 10.1101/2023.12.04.23299406.

34. C. Ding, T. Yao, C. Wu, and J. Ni, "Deep learning for personalized electrocardiogram diagnosis: A review," arXiv preprint arXiv:2409.07975, 2024, doi: 10.48550/arXiv.2409.07975.

35. J. Huo, S. F. Quan, J. Roveda, and A. Li, "BASH-GN: A new machine learning–derived questionnaire for screening obstructive sleep apnea," Sleep Breath., vol. 27, no. 2, pp. 449–457, 2023, doi: 10.1007/s11325-022-02629-8.

36. J. Yang, "Research on the propagation model of COVID-19 based on virus dynamics," in Proc. 2nd Int. Conf. Biol. Eng. Med. Sci. (ICBioMed), SPIE, 2023, pp. 962–967, doi: 10.1117/12.2669681.

37. J. Huo, S. F. Quan, J. Roveda, and A. Li, "Coupling analysis of heart rate variability and cortical arousal using a deep learning algorithm," PLoS One, vol. 18, no. 4, p. e0284167, 2023, doi: 10.1371/journal.pone.0284167.

38. M. Abdelkhalek, J. Qiu, M. Hernandez, A. Bozkurt, and E. Lobaton, "Investigating the relationship between cough detection and sampling frequency for wearable devices," in Proc. 43rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), 2021, pp. 7103–7107, doi: 10.1109/EMBC46164.2021.9630082.

39. J. Yang, "Predicting water quality through daily concentration of dissolved oxygen using improved artificial intelligence," Sci. Rep., vol. 13, no. 1, p. 20370, 2023, doi: 10.1038/s41598-023-47060-5.

40. Y. Deng, X. Zhou, B. Kim, A. Tewari, A. Gupta, and N. B. Shroff, "Weighted Gaussian process bandits for non-stationary en-vironments," arXiv preprint arXiv:2107, 2021, doi: 10.48550/arXiv.2107.02371.

41. S. Jiao and J. J. McCarthy, "A synergistic approach to atmospheric water scavenging," ACS Appl. Mater. Interfaces, vol. 15, no. 5, pp. 7353–7358, 2023, doi: 10.1021/acsami.2c18920.

42. S. Jiao and J. McCarthy, "Novel composites for atmospheric water absorption," in Proc. 2020 Virtual AIChE Annu. Meeting, AIChE, 2020.

43. J. Huo, Y. Wang, N. Wang, W. Gao, J. Zhou, and Y. Cao, "Data-driven design and optimization of ultra-tunable acoustic metamaterials," Smart Mater. Struct., vol. 32, no. 5, p. 05LT01, 2023, doi: 10.1088/1361-665X/acc36c.

44. Y. Deng, X. Zhou, A. Ghosh, A. Gupta, and N. B. Shroff, "Interference constrained beam alignment for time-varying channels via kernelized bandits," in Proc. 20th Int. Symp. Modeling Optim. Mobile, Ad Hoc, Wireless Netw. (WiOpt), IEEE, 2022, pp. 25–32, doi: 10.23919/WiOpt56218.2022.9930591.

45. M. Mieles, A. D. Walter, S. Wu, Y. Zheng, G. R. Schwenk, M. W. Barsoum, and H. F. Ji, "Hydronium‐crosslinked inorganic hydrogel comprised of 1D lepidocrocite titanate nanofilaments," Adv. Mater., vol. 36, no. 50, p. 2409897, 2024, doi: 10.1002/adma.202409897.

46. C. Qi, F. Amato, Y. Guo, Y. Zhang, and G. D. Durgin, "A backscatter channel sounder using tunneling RFID tags," in Proc. 2021 IEEE Int. Conf. RFID (RFID), IEEE, 2021, pp. 1–7, doi: 10.1109/RFID52461.2021.9444368.

47. Y. Wang, Y. Guo, R. Kumar, R. Sharma, and M. Swaminathan, "Edge-based material cell meshing for improved accuracy of Laguerre-FDTD method," in Proc. 2023 IEEE Int. Symp. Antennas Propag. USNC-URSI Radio Sci. Meeting (USNC-URSI), IEEE, 2023, pp. 1429–1430, doi: 10.1109/USNC-URSI52151.2023.10238031.

48. Y. Guo, O. W. Bhatti, and M. Swaminathan, "Training set optimization with uncertainty quantification for machine learning models of electromagnetic structures," in Proc. 2022 IEEE Electr. Des. Adv. Packag. Syst. (EDAPS), IEEE, 2022, pp. 1–3, doi: 10.1109/EDAPS56906.2022.9994897.

49. H. Guo, A. E. Stueck, J. B. Doppenberg, Y. S. Chae, A. B. Tikhomirov, H. Zeng, M. A. Engelse, B. L. Gala-Lopez, A. Mahade-van-Jansen, and I. P. Alwayn, "Evaluation of minimum-to-severe global and macrovesicular steatosis in human liver speci-mens: a portable ambient light-compatible spectroscopic probe," medRxiv, 2023, doi: 10.1002/jbio.202400292.

50. H. Guo, V. S. Zions, B. A. Law, and K. C. Hewitt, "Potential of Raman‐reflectance combination in quantifying liver steatosis and fat droplet size: evidence from Monte Carlo simulations and phantom studies," J. Biophotonics, 2024, Art. no. e202400156, doi: 10.1002/jbio.202400156.

51. H. Guo, A. E. Stueck, J. B. Doppenberg, Y. S. Chae, A. B. Tikhomirov, H. Zeng, B. L. Gala-Lopez, A. Mahadevan-Jansen, M. A. Engelse, and I. P. Alwayn, "Assessment of liver steatosis using an ambient light-compatible Raman system: enhancing speci-ficity with supplementary reflectance information," in Proc. Biomed. Vibrational Spectrosc. 2024: Adv. Res. Ind., SPIE, 2024, p. PC128390B, doi: 10.1117/12.3009086.

52. H. Guo, A. E. Stueck, A. B. Tikhomirov, H. Zeng, I. P. Alwayn, B. L. Gala-Lopez, A. Mahadevan-Jansen, A. K. Locke, and K. C. Hewitt, "Evaluation of steatosis in human liver specimens using an ambient light-compatible Raman spectroscopy approach," in Proc. Bio-Optics: Des. Appl., Optica Publishing Group, 2023, p. JTu4B.26, doi: 10.1364/BODA.2023.JTu4B.26.

53. K. Jo, J. Choi, K. Kim, S. Kim, D. L. Nguyen, X. T. Vo et al., “Artificial Behavior Intelligence: Technology, Challenges, and Future Directions,” arXiv preprint arXiv:2505.03315, 2025, doi: 10.48550/arXiv.2505.03315.

54. E. Murphy-Chutorian, A. Doshi, and M. M. Trivedi, "Head pose estimation for driver assistance systems: A robust algorithm and experimental evaluation," in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), Sept. 2007, pp. 709–714, doi: 10.1109/ITSC.2007.4357803.

55. Z. Shou, X. Chen, Y. Fu, and X. Di, "Multi-agent reinforcement learning for Markov routing games: a new modeling paradigm for dynamic traffic assignment," Transp. Res. Part C Emerg. Technol., vol. 137, p. 103560, 2022, doi: 10.1016/j.trc.2022.103560.

56. S. Liu, Y. Wang, X. Chen, Y. Fu, and X. Di, "SMART-eFlo: An integrated SUMO-gym framework for multi-agent reinforcement learning in electric fleet management problem," in Proc. IEEE Int. Conf. Intell. Transp. Syst. (ITSC), IEEE, 2022, pp. 3026–3031, doi: 10.1109/ITSC55140.2022.9922047.

57. X. Chen, S. Liu, and X. Di, "A hybrid framework of reinforcement learning and physics-informed deep learning for spatio-temporal mean field games," in Proc. 20th Int. Conf. Autonomous Agents Multiagent Syst., ACM Digital Library, 2023.

58. F. Zhou, C. Zhang, X. Chen, and X. Di, "Graphon mean field games with a representative player: Analysis and learning algo-rithm," arXiv preprint arXiv:2405.08005, 2024, doi: 10.48550/arXiv.2405.08005.

59. X. Chen, S. Liu, and X. Di, "Learning dual mean field games on graphs," in Proc. Eur. Conf. Artif. Intell. (ECAI), 2023, pp. 421–428, doi: 10.3233/FAIA230299.

60. S. Liu, X. Chen, and X. Di, "Scalable learning for spatiotemporal mean field games using physics-informed neural operator," Mathematics, vol. 12, no. 6, p. 803, 2024, doi: 10.3390/math12060803.

61. X. Chen, Z. Li, and X. Di, "Social learning in Markov games: Empowering autonomous driving," in Proc. IEEE Intell. Vehicles Symp. (IV), IEEE, 2022, pp. 478–483, doi: 10.1109/IV51971.2022.9827289.

62. X. Chen, X. Di, and Z. Li, "Social learning for sequential driving dilemmas," Games, vol. 14, no. 3, p. 41, 2023, doi: 10.3390/g14030041.

63. X. Chen and X. Di, "Legal framework for rear-end crashes in mixed-traffic platooning: A matrix game approach," Future Transp., vol. 3, no. 2, pp. 417–428, 2023, doi: 10.3390/futuretransp3020025.

64. Z. Hu, Y. Sun, and Y. Yang, "Switch to generalize: Domain-switch learning for cross-domain few-shot classification," in Proc. Int. Conf. Learn. Representations (ICLR), 2022.

65. Z. Hu, Y. Sun, and Y. Yang, "Suppressing the heterogeneity: A strong feature extractor for few-shot segmentation," in Proc. 11th Int. Conf. Learn. Representations (ICLR), 2023.

66. X. Chen, X. Liu, W. Liu, X.-P. Zhang, Y. Zhang, and T. Mei, "Explainable person re-identification with attribute-guided metric distillation," in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), 2021, pp. 11813–11822, doi: 10.1109/ICCV48922.2021.01160.

67. Z. Hu, Y. Sun, Y. Yang, and J. Zhou, "Divide-and-regroup clustering for domain adaptive person re-identification," in Proc. AAAI Conf. Artif. Intell., 2022, pp. 980–988 , doi: 10.1609/aaai.v36i1.19981.

68. X. Chen, W. Liu, X. Liu, Y. Zhang, J. Han, and T. Mei, "MAPLE: Masked pseudo-labeling autoencoder for semi-supervised point cloud action recognition," in Proc. 30th ACM Int. Conf. Multimedia, 2022, pp. 708–718, , doi: 10.1145/3503161.3547892.

69. Z. Hu, Y. Sun, J. Wang, and Y. Yang, "DAC-DETR: Divide the attention layers and conquer," Adv. Neural Inf. Process. Syst., vol. 36, pp. 75189–75200, 2023

70. X. Chen, W. Liu, Q. Bao, X. Liu, Q. Yang, R. Dai, and T. Mei, "Motion capture from inertial and vision sensors," arXiv preprint arXiv:2407.16341, 2024, doi: 10.48550/arXiv.2407.16341.

71. M. Yin, "Data security and privacy preservation in big data age," in Proc. 2nd Int. Conf. Mechatronics Eng. Inf. Technol. (ICMEIT), Atlantis Press, 2017, pp. 387–391, doi: 10.2991/icmeit-17.2017.76.

72. J. Qiu and A. Aysu, "SHIFT SNARE: Uncovering Secret Keys in FALCON via Single-Trace Analysis," arXiv preprint arXiv:2504.00320, 2025, doi: 10.48550/arXiv.2504.00320.

73. M. Yin, A. K. Veldanda, A. Trivedi, J. Zhang, K. Pfeiffer, Y. Hu, S. Garg, E. Erkip, L. Righetti, and S. Rangan, "Millimeter wave wireless assisted robot navigation with link state classification," IEEE Open J. Commun. Soc., vol. 3, pp. 493–507, 2022, doi: 10.1109/OJCOMS.2022.3155572.

74. S. Yang, “The Impact of Continuous Integration and Continuous Delivery on Software Development Efficiency”, J. Comput. Signal Syst. Res., vol. 2, no. 3, pp. 59–68, Apr. 2025, doi: 10.71222/pzvfqm21.

75. V. Semkin, M. Yin, Y. Hu, M. Mezzavilla, and S. Rangan, "Drone detection and classification based on radar cross section sig-natures," in Proc. Int. Symp. Antennas Propag. (ISAP), IEEE, 2021, pp. 223–224, doi: 10.23919/ISAP47053.2021.9391260.

76. M. Yin, Millimeter Wave Wireless Assisted Indoor Robot Navigation, Doctoral dissertation, New York University Tandon School of Engineering, 2024.

77. K. Pfeiffer, Y. Jia, M. Yin, A. K. Veldanda, Y. Hu, A. Trivedi , et al., "Path planning under uncertainty to localize mmWave sources," arXiv preprint arXiv:2303.03739, 2023, doi:10.48550/arXiv.2303.03739.

78. Y. Hu, M. Yin, W. Xia, S. Rangan, and M. Mezzavilla, “Multi-frequency channel modeling for millimeter wave and THz wire-less communication via generative adversarial networks,” in Proc. 56th Asilomar Conf. Signals, Syst., Comput., IEEE, 2022, pp. 670–676, doi: 10.1109/IEEECONF56349.2022.10052063.

79. M. G. Aram, H. Guo, M. Yin, and T. Svensson, "Site-Specific Outdoor Propagation Assessment and Ray-Tracing Analysis for Wireless Digital Twins," in Proc. 19th Eur. Conf. Antennas Propag. (EuCAP), Mar. 2025, pp. 1–5, IEEE, doi: 10.23919/EuCAP63536.2025.10999688.

80. F. Gao, “The Role of Data Analytics in Enhancing Digital Platform User Engagement and Retention”, J. Media Journal. Commun. Stud., vol. 1, no. 1, pp. 10–17, Apr. 2025, doi: 10.71222/z27xzp64.

81. S. Cao and J. Xiao, “Human-Robot Complementary Collaboration for Flexible and Precision Assembly,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2024, pp. 12971–12977, doi: 10.1109/ICRA57147.2024.10610825.

82. T. Kosch, J. Karolus, J. Zagermann, H. Reiterer, A. Schmidt, and P. W. Woźniak, “A survey on measuring cognitive workload in human-computer interaction,” ACM Comput. Surv., vol. 55, no. 13s, pp. 1–39, 2023 , doi: 10.1145/3582272

83. A. S. Abhigyan, M. Yin, and X. T. Tran, "Real-time unmanned aerial vehicle connectivity," U.S. Patent Appl. 17/502,568, 2023.

84. Z. Yuan, F. Lang, T. Xu, and X. Yang, “Sr-lio: Lidar-inertial odometry with sweep reconstruction,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2024, pp. 7862–7869, doi: 10.1109/IROS58592.2024.10802314.

85. Z. Yuan, J. Deng, R. Ming, F. Lang, and X. Yang, “SR-LIVO: LiDAR-inertial-visual odometry and mapping with sweep recon-struction,” IEEE Robot. Autom. Lett., 2024, doi: 10.1109/LRA.2024.3389415.

86. Z. Yuan, F. Lang, J. Deng, H. Luo, and X. Yang, “Voxel-svio: Stereo visual-inertial odometry based on voxel map,” IEEE Robot. Autom. Lett., 2025, doi: 10.1109/LRA.2025.3568307.

87. L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen, “Deep learning for generic object detection: A survey,” Int. J. Comput. Vis., vol. 128, no. 2, pp. 261–318, 2020, doi: 10.1007/s11263-019-01247-4.

88. E. Imani, G. Zhang, R. Li, J. Luo, P. Poupart, P. H. Torr, and Y. Pan, "Label Alignment Regularization for Distribution Shift," arXiv preprint arXiv:2211.14960, 2022 , doi: 10.48550/arXiv.2211.14960.

89. Y. Guo, X. Li, and M. Swaminathan, "2D spectral transposed convolutional neural network for S-parameter predictions," in 2022 IEEE 31st Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2022, pp. 1–3, doi: 10.1109/EPEPS53828.2022.9947109.

90. M. Swaminathan, O. W. Bhatti, Y. Guo, E. Huang, and O. Akinwande, "Bayesian learning for uncertainty quantification, op-timization, and inverse design," IEEE Trans. Microwave Theory Tech., vol. 70, no. 11, pp. 4620–4634, 2022, doi: 10.1109/TMTT.2022.3206455.

91. Y. Guo, X. Li, Y. Wang, R. Kumar, and M. Swaminathan, "Batch Training of Gaussian Process for Up-sampling Problems in S-Parameter Predictions," in 2023 IEEE 32nd Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2023, pp. 1–3, doi: 10.1109/EPEPS58208.2023.10314896.

92. Y. Fu, A. Jain, X. Chen, Z. Mo, and X. Di, "DriveGenVLM: Real-world Video Generation for Vision Language Model Based Autonomous Driving," in 2024 IEEE International Automated Vehicle Validation Conference (IAVVC), 2024, pp. 1-6, doi: 10.1109/IAVVC63304.2024.10786438.

93. X. Chen, F. Yongjie, S. Liu, and X. Di, "Physics-informed neural operator for coupled forward-backward partial differential equations," in 1st Workshop on the Synergy of Scientific and Machine Learning Modeling @ ICML 2023, 2023.

94. S. Sun, R. Li, P. Torr, X. Gu, and S. Li, "Clip as rnn: Segment countless visual concepts without training endeavor," in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 2024, pp. 13171–13182, doi: 10.1109/CVPR52733.2024.01251.

95. M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, "The pascal visual object classes (VOC) challenge," Int. J. Comput. Vis., vol. 88, pp. 303–338, 2010, doi: 10.1007/S11263-009-0275-4.

96. B. Song, X. Wang, P. Sun, and A. Boukerche, "Robust COVID-19 vaccination control in a multi-city dynamic transmission network: A novel reinforcement learning-based approach," J. Network Comput. Appl., vol. 219, 2023, Art. no. 103715, doi: 10.1016/j.jnca.2023.103715.

Downloads

Published

26 July 2025

Issue

Section

Article

How to Cite

Jarvis, W. A. (2025). Vision-Based AI Solutions for Human Life and Social Science: From Image Processing to Human Behavior Modeling. European Journal of AI, Computing & Informatics, 1(2), 87-96. https://doi.org/10.71222/pgdch948