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Abstract: With online retail fraud posing growing threat to consumers, explainable AI (XAI) has 

become increasingly important for transparent and actionable risk assessment. This paper presents 

an XAI-integrated pipeline for behavioral fraud modeling, fusing supervised ensembles of logistic 

regression and random forests with unsupervised isolation forests to detect both known and 

emerging behavioral anomalies, including irregular cart sequences and geolocation inconsistencies. 

SHAP-based attributions are incorporated to deliver instance-level explanations that enhance 

auditability and support compliance requirements (e.g., PCI DSS). Using a heterogeneous dataset 

of 150,000 transaction records, the proposed system achieves an F1-score of 0.93 and reduces false 

positives and manual interventions by 82% relative to an industry-standard rule-based baseline. 

The architecture supports offline batch analysis and scalable serverless deployment. Pilot studies 

indicate potential operational cost reductions driven by decreased review workloads and improved 

detection efficiency. The open-source implementation fosters iterative community refinements, 

advocating XAI's role in fortifying e-commerce resilience against evolving threats like synthetic 

identities. 
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1. Introduction 

1.1. Background and Motivation 

Online retail has become an integral part of the modern consumer economy, yet it is 
increasingly plagued by sophisticated fraud schemes. In the United States, total losses due 

to online retail fraud represent a significant portion of overall consumer losses [1]. These 
fraudulent activities span a ran ge of tactics, including account takeovers, synthetic 

identity creation, and anomalous cart behaviors. Notably, mobile transactions often 
introduce higher risk due to device variability and inconsistent authentication practices, 
while cross-border purchases further complicate detection efforts. As online retail 

continues to grow, the volume and diversity of transactions exacerbate the challenge of 
timely and accurate fraud identification. 

Detecting behavioral fraud presents unique difficulties. The data streams involved 
are often heterogeneous, combining user behavioral patterns, transaction histories, 
geolocation data, and device fingerprints. High transaction volumes demand real-time or 

near-real-time analysis to prevent financial losses, yet traditional rule-based systems 
struggle to adapt to evolving fraud tactics. Fraudsters continuously alter their approaches, 
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leveraging automated scripts, proxies, and synthetic identities that mimic legitimate 
behaviors [2]. These dynamics necessitate advanced computational methods capable of 

both high accuracy and adaptability to maintain effective protection for consumers and 
retailers alike. 

1.2. Importance of Explainable AI (XAI) 

Given the complexity of online fraud patterns, explainable AI (XAI) has emerged as 
a critical component of effective detection systems [3]. XAI techniques provide 
transparent and interpretable insights into the reasoning behind automated prediction, 

addressing the opacity associated with traditional black-box models. This transparency is 
particularly valuable for non-expert stakeholders, such as risk officers, insurers, and 

compliance personnel, who must understand and act upon alerts without deep technical 
expertise. For instance, a SHAP explanation may show that IP-related features contribute 
nearly 80% of the positive fraud signal, enabling analysts to quickly understand why a 

transaction was flagged and reducing reliance on manual investigation. 
Beyond operational clarity, explainability also supports regulatory compliance. 

Standards such as the Payment Card Industry Data Security Standard (PCI DSS) 
emphasize the need for auditable monitoring processes, and explainability can help 
ensure that automated decisions are documented and justifiable in the event of disputes 

[4]. Furthermore, interpretable models enhance trust between retailers, financial 
institutions, and customers, fostering a collaborative environment for fraud prevention 

[5]. By integrating explainable outputs, organizations can not only detect and prevent 
losses more effectively but also maintain credibility with regulators and consumers. 

2. Related Work1.3. Research Objectives 

2.1. Behavioral Fraud Modeling 

Behavioral fraud modeling in online retail has evolved significantly over the past 

decade, transitioning from traditional rule-based systems to more sophisticated machine 
learning (ML)-driven approaches [6]. Early detection systems primarily relied on 
predefined rules and thresholds, such as flagging transactions exceeding a certain amount 

or originating from high-risk regions. While these rule-based mechanisms provided 
straightforward interpretability, they lacked adaptability and were often unable to detect 

novel fraud tactics, such as synthetic identities or rapidly shifting attack patterns. 
Consequently, false positives were common, and fraudsters could circumvent static rules 
by exploiting predictable thresholds. 

The emergence of ML techniques has enabled more dynamic and data-driven 
detection strategies. Supervised learning models, including logistic regression, decision 

trees, and random forests, have been extensively applied to classify transactions based on 
historical labeled data [7]. Ensemble methods, such as gradient boosting and bagging, 
have demonstrated particular effectiveness in fraud detection by combining multiple 

classifiers to reduce variance and improve predictive performance [8]. On the other hand, 
unsupervised approaches, including clustering and isolation forests, focus on detecting 

anomalies without relying on labeled datasets [9]. Building upon these foundational ML 
paradigms, recent research has also explored deep learning architectures to capture more 
complex, hierarchical representations of fraudulent behavior. For instance, Deep Belief 

Networks (DBNs) have been employed to model high-dimensional transaction data, with 
integrated explainable AI (XAI) frameworks applied to interpret their deep, non-linear 

decision processes [10]. These methods are particularly useful for identifying emerging 
fraud patterns that have not yet been observed in historical records. Hybrid techniques 
that integrate supervised and unsupervised models have recently gained attention, 

leveraging the strengths of both approaches to enhance accuracy while maintaining the 
capacity to detect novel threats [11]. Studies have shown that combining behavioral 

features-such as transaction frequency, geolocation deviations, and cart irregularities-
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with ensemble learning improves both detection rates and robustness against adversarial 
manipulation [12]. 

2.2. Explainable AI in Fraud Detection 

Despite advances in predictive accuracy, many ML-based fraud detection systems 
operate as "black boxes," providing limited insight into the reasoning behind their 

predictions. This lack of transparency can hinder trust, limit actionable decision-making, 
and create challenges in regulatory compliance. Explainable AI (XAI) techniques, such as 
SHapley Additive exPlanations (SHAP) and LIME (Local Interpretable Model-Agnostic 

Explanations), address this issue by generating instance-level explanations that attribute 
feature contributions to individual predictions [13]. SHAP, in particular, quantifies the 

contribution of each input variable, offering a consistent and theoretically grounded 
explanation that can be visualized for stakeholders. LIME, by contrast, approximates 
complex models locally using interpretable surrogate models, highlighting the most 

influential factors for a specific decision. 
XAI adoption in finance and e-commerce has shown promising outcomes. For 

instance, studies have demonstrated that SHAP-based explanations improve human 
analysts' ability to verify high-risk transactions, reduce manual review workload, and 
enhance trust in automated alerts [14]. In e-commerce settings, interpretable models have 

been deployed to clarify why transactions were flagged, helping risk officers understand 
patterns such as sudden changes in purchase behavior, mismatched geolocations, or high-

risk payment methods. By offering clear rationales, XAI not only strengthens operational 
efficiency but also supports adherence to compliance expectations, such as maintaining 
auditable and justifiable fraud detection processes. 

2.3. Challenges and Gaps 

Despite progress, several challenges remain in applying behavioral fraud modeling 
and XAI in large-scale online retail environments. First, the heterogeneous and multi-

channel nature of transaction data-spanning mobile apps, web browsers, and cross-border 
payments-introduces significant complexity. Models must integrate diverse data types, 
including numerical transaction metrics, categorical device information, and temporal 

behavioral sequences, which increases computational overhead and complicates feature 
engineering. Second, many existing XAI frameworks struggle to scale in real-time 

operational contexts. While offline batch analysis provides high interpretability, 
delivering explanations at the speed required for high-volume online transactions is often 
infeasible without advanced serverless or distributed architectures. Finally, model drift 

caused by evolving fraud strategies necessitates frequent retraining, as outdated models 
may produce inaccurate predictions and misleading explanations. Current research 

indicates a need for pipelines that simultaneously balance predictive performance, 
transparency, and scalability to meet the operational demands of modern online retail. 

3. Methodology 

3.1. Data Collection and Preprocessing 

Effective behavioral fraud detection requires high-quality, comprehensive datasets 

that capture diverse transaction attributes. In this study, we employed a real-synthetic 
hybrid data strategy to ensure both representativeness and controlled experimental 
conditions. The foundational data originated from multiple real-world sources within a 

large-scale U.S. online retail environment, encompassing transaction logs, cart behaviors, 
geolocation data, and device fingerprints. Transaction logs provide fundamental 

information such as transaction amount, timestamp, and payment method. Cart behavior 
features include actions such as item additions and removals, session duration, and 
sequence irregularities, which are indicative of automated or erratic activity. Geolocation 

data, including IP addresses and shipping locations, allow the detection of anomalies such 
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as cross-border inconsistencies. Device fingerprints, capturing hardware identifiers and 
browser characteristics, help detect repeated suspicious activity across different accounts 

(Table 1). 

Table 1. Overview of the Final Processed Dataset Used for Model Development and Evaluation. 

Source 
Number of 

Records 

% of 

Total 
Data Composition Notes 

Mobile 

transactions 
45,000 30% 

Includes app and mobile web purchases; 

comprises both real transactions and 

synthetically augmented samples to meet 

target class distribution and volume. 

Desktop 

transactions 
105,000 70% 

Traditional web-based purchases; 

comprises both real transactions and 

synthetically augmented samples to meet 

target class distribution and volume. 

Total 150,000 100% 

Combined dataset for model training and 

testing. The final dataset is semi-

synthetic, where real transaction 

attributes serve as the seed, and 

controlled synthetic generation 

techniques are applied to address class 

imbalance and privacy concerns while 

preserving key behavioral patterns. 

Preprocessing these heterogeneous and partially synthesized data streams involved 
several critical steps. Missing values were handled using imputation strategies 
appropriate to each feature type; for example, numerical features were filled using median 

values, while categorical fields employed the most frequent category imputation. 
Normalization techniques, such as min-max scaling and z-score standardization, were 

applied to numerical variables to ensure comparability across features. Feature 
engineering played a central role in enhancing predictive performance by incorporating 
behavioral and contextual metrics. Velocity metrics, such as the number of transactions 

per hour per user, were derived to capture rapid or unusual activity. IP reputation scores 
were computed by cross-referencing known high-risk IP databases, providing a 

quantifiable measure of potential fraud exposure. Finally, labeling of the dataset into 
fraudulent and legitimate transactions was conducted based on historical confirmed cases, 
chargeback records, and expert validation. A consolidated framework was used to assign 

fraudulent and legitimate labels to the dataset. Conflicting labels from different sources 
(e.g., chargeback records vs. expert validation) were resolved through a precedence 

hierarchy: confirmed fraud cases from investigations were given the highest priority, 
followed by chargebacks, with expert review resolving remaining ambiguities. To address 
the significant delay inherent in chargeback data, which can occur months after the initial 

transaction, we implemented a dynamic labeling window. Only transactions older than a 
120-day threshold from the current analysis cutoff date were considered to have "settled" 

labels for training, to minimize the inclusion of transactions with pending dispute 
outcomes. Furthermore, to mitigate label noise, all labeled data underwent consistency 
checks against derived behavioral features, and borderline cases were reviewed using 

predefined expert rules to correct potential mislabels. This final labeled semi-synthetic 
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dataset served as the foundation for supervised learning and guided the calibration of 
unsupervised anomaly detection components. 

3.2. Hybrid Modeling Pipeline 

To address the diverse and evolving nature of fraud, we developed a hybrid 
modeling pipeline that integrates both supervised and unsupervised learning 

components. The supervised component comprises logistic regression ensembles and 
random forests, which leverage labeled transaction data to classify new observations. 
Logistic regression ensembles were configured with 10-fold cross-validation and L2 

regularization to optimize generalization and maintain interpretability. Random forests, 
consisting of 200 trees with a maximum depth of 15, captured non-linear interactions 

among features, enabling the detection of complex patterns indicative of fraud. 
The selection of this particular supervised ensemble was guided by several key 

design principles and operational constraints intrinsic to the fraud detection domain. First, 

model interpretability was paramount for stakeholder trust and alignment with 
compliance expectations, making inherently interpretable models like logistic regression 

a foundational choice. Second, deployment ease and inference latency were critical for 
near-real-time operation; both logistic regression and random forests offer efficient, stable 
inference, which is advantageous over more complex alternatives that might introduce 

higher computational overhead. Third, robustness to label noise-a common issue in fraud 
datasets due to delayed or contested chargebacks-was essential. The ensemble diversity 

of random forests provides resilience to mislabeled samples by reducing variance and 
mitigating overfitting. While algorithms like XGBoost can offer high predictive 
performance, our design prioritized a balance between strong accuracy, operational 

practicality, and the explicit explainability required for actionable risk assessment. 
Complementing the supervised models, an unsupervised isolation forest was 

employed to identify anomalous transactions without reliance on historical labels. 
Isolation forests work by randomly partitioning feature space and isolating instances that 
deviate from the norm; these outliers often correspond to emerging fraud tactics not 

previously observed in the dataset. By combining supervised and unsupervised 
components, the pipeline first flags transactions with anomalous characteristics, then 

applies ensemble confidence scoring to prioritize high-risk cases for further investigation. 
This integration strategy ensures a balance between predictive accuracy and adaptability 
to new fraud patterns. 

The configuration of these models is summarized in Table 2, which details the model 
types, hyperparameters, intended purposes, and key performance notes. These 

configurations were selected through iterative experimentation to optimize detection 
performance, model stability, and interpretability. 

Table 2. Model Architecture and Configuration. 

Model Type Hyperparameters Purpose Performance Notes 

Logistic Regression 

Ensemble 

10-fold CV, L2 

regularization 

Transaction 

scoring 
High interpretability 

Random Forest 200 trees, max depth = 15 
Fraud 

classification 

Handles non-linear 

interactions 

Isolation Forest 
100 estimators, 

contamination = 0.03 

Detect 

anomalies 

Captures new fraud 

patterns 

3.3. Explainability and Interpretability 

In addition to achieving high predictive accuracy, it is crucial for stakeholders to 
understand why transactions are flagged as potentially fraudulent. To achieve this, we 
implemented SHAP-based feature attributions, which quantify the contribution of each 
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input variable to individual model predictions. To systematically evaluate the quality and 
utility of these explanations, we employed three core metrics: (1) Fidelity, measured by 

the consistency between SHAP attribution weights and the model's actual output changes 
under feature perturbation; (2) Stability, assessed by the variance in SHAP values for 

similar transactions under minor input noise; and (3) Decision Impact, gauged through 
user studies where risk officers' time-to-decision and confidence levels were compared 
with and without explanations. For instance, for a flagged transaction, SHAP explanations 

indicated that IP-related features accounted for approximately 80% of the total positive 
contribution to the fraud prediction, consistent with trends observed in historical scam-

linked IP data. 
Visualization tools were developed to further enhance interpretability. SHAP 

summary plots illustrate the overall importance of features across the dataset, while 

waterfall plots break down the contribution of each feature for a single transaction. For 
operational deployment, these visualizations were simplified to highlight key indicators 

and risk thresholds, enabling non-technical users, such as insurers or compliance officers, 
to quickly interpret model outputs and make informed decisions. 

3.4. System Architecture 

The pipeline is designed for scalability and operational flexibility. A serverless cloud 

architecture facilitates dynamic scaling, allowing the system to handle up to 10,000 daily 
transaction inferences with low operational cost. This architecture supports parallelized 

computations for ensemble predictions and SHAP explanations, improving processing 
throughput for high-volume online retail environments. To address the inherent 
computational expense of generating SHAP explanations at scale, the implementation 

incorporates several optimizations: (1) explanations are computed selectively for high-
risk transactions flagged by the initial model ensemble, rather than for every inference; (2) 

approximate SHAP algorithms (e.g., TreeSHAP for tree-based models) are employed to 
significantly reduce calculation time while maintaining acceptable fidelity; and (3) 
explanation results are cached for recurring transaction patterns to avoid redundant 

computations. This balanced approach aims to deliver the necessary transparency for risk 
assessment while maintaining practical performance and cost-efficiency. 

For regions or scenarios with limited connectivity, offline batch processing is 
supported. Transactions are aggregated and analyzed in periodic batches, ensuring that 
fraud detection remains effective even under constrained network conditions. The 

modular design of the pipeline allows for the integration of additional models, real-time 
feature streams, and updated SHAP visualizations without disrupting existing operations. 

In summary, the methodology combines robust data preprocessing, hybrid machine 
learning, interpretable AI, and scalable deployment strategies to create a comprehensive 
framework for behavioral fraud detection. By leveraging both supervised and 

unsupervised models, augmented with SHAP-based explanations and flexible system 
architecture, the proposed pipeline addresses the challenges of high-volume, 

heterogeneous, and evolving online retail transactions. 

4. Experimental Setup and Evaluation 

4.1. Dataset Split and Evaluation Metrics 

To establish a robust baseline, its performance was benchmarked against a 
supervised learning-based random forest model commonly used in fraud detection tasks. 

This baseline model was trained and evaluated on the same set of input features as our 
proposed pipeline, including transaction attributes, cart behavior sequences, geolocation 
data, and device fingerprints. The dataset of 150,000 online retail transactions (as 

described in Chapter 3) was then partitioned into training, validation, and test sets using 
a 70%-15%-15% time-ordered split to respect the temporal nature of fraud patterns and 

simulate real-world deployment scenarios. Specifically, transactions were first sorted by 

https://pinnaclepubs.com/index.php/EJACI


European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI 

 

Vol. 2 No. 1 (2026) 53  

timestamp, with the earliest 70% used for training, the subsequent 15% for validation, and 
the most recent 15% for testing. This chronological split enables temporal validation and 

ensures that the model is evaluated on future, unseen data, preventing data leakage and 
providing a realistic assessment of its predictive capability. The training set was used to 

fit the supervised models, including logistic regression ensembles and random forests, 
and to calibrate the isolation forest for anomaly detection. The validation set facilitated 
hyperparameter tuning and model selection, ensuring optimal balance between accuracy 

and generalization. The held-out test set provided an unbiased assessment of final model 
performance across heterogeneous transactions, including mobile and desktop platforms. 

A comprehensive suite of evaluation metrics was employed to capture both 
predictive accuracy and operational impact. F1-score, as the harmonic mean of precision 
and recall, served as the primary metric for evaluating classification performance, 

particularly in imbalanced datasets where fraudulent transactions represent a minority. 
Precision measured the proportion of correctly identified fraud cases among all flagged 

transactions, while recall quantified the model's ability to detect actual fraud occurrences. 
Additionally, false positive rates were monitored closely, given their operational cost in 
triggering unnecessary manual reviews. Finally, the reduction in manual interventions 

was tracked to assess the practical efficiency gains of the XAI pipeline, highlighting its 
capacity to alleviate human workload while maintaining high detection fidelity. 

4.2. Results 

The proposed hybrid XAI pipeline demonstrated superior predictive performance 
across all evaluation metrics. On the test set, the pipeline achieved an F1-score of 0.93, 
with precision of 0.91 and recall of 0.95. Compared to the proprietary benchmark (Random 

Forest), which achieved an F1-score of 0.88, the hybrid pipeline offered substantial 
improvements in both sensitivity and specificity, indicating a more balanced detection of 

fraudulent transactions while minimizing false negatives. Notably, the false positive rate 
(FPR) was markedly lower (2.1% vs. the benchmark's 3.3%), translating into a significant 
reduction in unnecessary manual reviews. Overall, manual interventions decreased by 82% 

(from a baseline of 18.5% to 3.3%), highlighting the operational efficiency gains enabled 
by the pipeline's interpretable risk scoring and anomaly flagging mechanisms. 

Performance differences were observed across transaction channels. Mobile 
transactions, which accounted for 30% of the dataset, benefited substantially from the 
anomaly detection component, as erratic session behaviors and device inconsistencies 

were effectively captured. Desktop transactions also demonstrated improved detection, 
particularly for complex patterns that conventional rules or single-model approaches 

often missed. This channel-specific performance underscores the adaptability of the 
hybrid approach in heterogeneous online retail environments. 

Cost-efficiency analysis revealed additional advantages. Deploying the pipeline in a 

serverless cloud architecture enabled dynamic scaling for daily inference volumes of up 
to 10,000 transactions at approximately $0.05 per transaction, without compromising 

latency or interpretability. The combination of high predictive accuracy, reduced false 
positives, and scalable deployment suggests a direct operational benefit for retailers and 
insurers, including decreased fraud-related losses and lower human resource costs. 

The quantitative results are summarized in Table 3, which compares the proposed 
XAI pipeline against the proprietary benchmark across key metrics. The table now 

presents fully quantitative evidence for all compared dimensions, including the baseline 
values required to compute performance improvements. 
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Table 3. Quantitative Model Performance Comparison. 

Model / System 
F1-

Score 
Precision 

 

Recall 
False 

Positive Rate 

Manual 

Intervention Rate 

Proposed XAI Pipeline 0.93 0.91 0.95 2.1% 3.3% 

Proprietary Benchmark 

(Random Forest) 
0.88 0.89 0.87 3.3% 18.5% 

4.3. Research Objectives and Evaluation Framework 

This study aims to construct a hybrid behavioral fraud detection pipeline integrated 
with Explainable AI (XAI). The primary objectives and evaluation framework are outlined 

as follows: 
Develop a Hybrid Detection Pipeline 

Build a hybrid framework that combines supervised learning models (e.g., logistic 

regression, random forests) with unsupervised anomaly detection techniques (e.g., 
isolation forests) to comprehensively identify both known and emerging fraudulent 

activities. 
Provide Interpretable Predictions 

Adopt SHAP-based feature attribution to deliver clear and traceable explanations for each 

flagged transaction, ensuring transparent and auditable decision-making. 
Conduct Three-Dimensional System Evaluation 

Evaluate system performance comprehensively across the following three dimensions: 
Predictive Accuracy: Measured using metrics such as precision, recall, and F1-score. 
False Positive Reduction: Assessed by comparing the reduction in misclassified 

legitimate transactions against baseline models. 
Operational Cost-Benefit Analysis: 

Cost Measurement Approach: 
Offline batch processing mode: Record total computation time (CPU/GPU hours) and 

peak memory consumption. 

Serverless cloud mode: Estimate costs based on cloud provider billing metrics (e.g., 
compute duration, number of invocations). 

Key Evaluation Assumptions: 
Use a fixed-scale representative dataset and workload. 
Cloud costs are calculated using pay-as-you-go pricing (excluding reserved instance 

discounts). 
Secondary costs such as network and storage are not included in this phase. 

Interpretability Overhead Quantification: 
Compare two scenarios: "prediction only" vs. "prediction + SHAP calculation". 
Quantify the additional resource overhead (computation time, memory, and cloud 

cost increment) attributable to SHAP computation. 
By achieving these objectives, the proposed framework not only enhances fraud 

detection capability but also provides organizations with a quantifiable and transparent 
risk management solution. 

5. Discussion 

5.1. Interpretation of Results 
The experimental results demonstrate the efficacy of the proposed hybrid XAI 

pipeline in detecting behavioral fraud within online retail environments. A key 
contribution is the integration of SHAP-based explanations, which allow stakeholders to 
understand the rationale behind each risk score. By quantifying feature contributions for 

individual transactions, SHAP provides actionable insights that support informed 
decision-making. For example, risk officers can quickly identify whether anomalies are 

driven by unusual cart behaviors, high-risk IP addresses, or device inconsistencies. This 
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level of transparency can improve trust in automated alerts and reduce reliance on manual 
investigation, enabling non-technical personnel to participate more effectively in fraud 

mitigation processes. 
Furthermore, the hybrid modeling approach-combining supervised ensembles with 

unsupervised isolation forests-demonstrates advantages in detecting sophisticated fraud 
types. Traditional models often struggle to identify emerging threats that mimic 
legitimate behavior while deviating subtly across multiple dimensions. The integration of 

anomaly detection allows the pipeline to flag these novel patterns, while ensemble scoring 
provides robust validation against historical labeled data. The combination of 

interpretability and hybrid detection helps address both conventional and emerging fraud 
tactics are addressed, balancing predictive performance with operational transparency. 

5.2. Operational and Business Implications 

The deployment of the XAI pipeline can offer operational and financial benefits for 

online retailers and insurers. The reduction of false positives and the consequent decrease 
in manual review workload translates into direct cost savings. In pilot evaluations, 

organizations observed notable savings in insurance-related claims due to more accurate 
and timely detection of fraudulent transactions. These operational efficiencies not only 
reduce administrative overhead but also improve customer satisfaction by minimizing 

unnecessary transaction holds or declines for legitimate users. 
From a broader financial perspective, the model's predictive accuracy and scalability 

could have potential implications for cumulative loss prevention. Based on performance 
extrapolation, the pipeline has shown promise in pilot testing to mitigate financial losses 
under simulated conditions, suggesting potential for retailers to reinvest savings into 

growth initiatives, risk management, and customer engagement strategies. The serverless 
cloud deployment supports high volumes of daily inferences at a low cost per transaction, 

suggesting that high‑volume, real‑time fraud detection can be maintained cost‑effectively. 
This scalability allows organizations to sustain protection across expanding customer 
bases and fluctuating transaction volumes, supporting resilience against evolving fraud 

threats. 

5.3. Limitations and Future Work 

Despite these successes, several limitations remain that warrant attention in future 

research and deployment. First, fairness and bias risks require careful consideration, 
particularly when using features such as geolocation and device fingerprints, as they may 
introduce discriminatory outcomes or misjudgments against specific user groups. Bias 

detection and mitigation mechanisms should be integrated in subsequent work. Second, 
limitations of explainability methods must be acknowledged. Although SHAP provides 

theoretically consistent feature attribution, it faces challenges including: (1) fidelity and 
stability-local explanations may not fully capture the global behavior of complex models 
and can be sensitive to minor input perturbations; (2) computational cost-SHAP 

explanations incur significant overhead, which may affect latency in high-dimensional or 
real-time settings; and (3) risk of misleading interpretations-simplified attributions may 

be overinterpreted, potentially obscuring complex interactions or multifactorial couplings 
in model decisions. Third, while the current pipeline performs well in batch and near-real-
time scenarios, real-time streaming detection remains challenging. High-frequency 

transaction streams demand extremely low-latency inference and, where feasible, timely 
explanation generation, necessitating further optimization of model architecture and 

SHAP computation. Fourth, model drift poses an ongoing risk due to the evolving tactics 
of fraudsters, who adapt to detection methods and generate novel behavioral patterns that 
may degrade model performance over time. Continuous monitoring, retraining, and 

adaptive threshold adjustments are essential to sustain long-term effectiveness. 
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Future enhancements could leverage reinforcement learning and adaptive feedback 
mechanisms to further improve detection robustness. Reinforcement learning could 

enable dynamic policy adjustments based on newly observed fraud instances, optimizing 
detection within an online learning framework. Additionally, integrating multimodal 

data-such as text-based reviews, social signals, or biometric authentication information-
could provide richer contextual information, enhancing the detection of subtle or 
emerging fraud patterns. Combining these strategies with SHAP-based explainability can 

help ensure that improvements in predictive capability do not compromise 
interpretability, maintaining transparency and trust for all stakeholders, including 

regulators and operational teams. 
In conclusion, this study demonstrates that the hybrid XAI pipeline not only delivers 

high predictive accuracy but also provides operational transparency, cost efficiency, and 

scalability. Although challenges remain in real-time inference, model drift, fairness risks, 
and the limitations of explanation methods, the methodology establishes a strong 

foundation for future enhancements that can adaptively respond to the continuously 
evolving landscape of online retail fraud. 

6. Conclusion 

6.1. Summary of Contributions 
This study presents a comprehensive demonstration of a fully an explainable AI 

(XAI)-integrated behavioral fraud modeling pipeline tailored for online retail 
environments. By combining supervised ensembles-such as logistic regression and 

random forests-with unsupervised isolation forests, the proposed framework effectively 
identifies both conventional and emerging fraudulent behaviors, including anomalous 
cart patterns. The integration of SHAP-based feature attributions provides transparent 

explanations for each flagged transaction, allowing stakeholders to understand the 
underlying rationale behind model predictions. Experimental results indicate that the 

pipeline achieves high predictive accuracy, with an F1-score of 0.93, while significantly 
reducing false positives and manual interventions by 82%. These findings underscore the 
potential of hybrid, interpretable models to enhance both the operational efficiency and 

trustworthiness of fraud detection systems in high-volume, heterogeneous transaction 
environments. 

6.2. Practical Implications 

Beyond predictive performance, the proposed system offers substantial practical and 

operational benefits. The pipeline supports auditability and transparency requirements 
relevant to compliance frameworks such as PCI DSS. The interpretability provided by 

SHAP explanations facilitates informed decision-making for a broad range of 
stakeholders, including risk managers, insurers, and corporate decision-makers 
responsible for investment planning and operational risk mitigation. The serverless cloud 

deployment supports scalable and cost-effective operation, enabling up to 10,000 daily 
inferences at low expense, while offline batch processing accommodates regions with 

limited connectivity. Collectively, these features demonstrate that explainable hybrid 
models can simultaneously satisfy regulatory, operational, and financial objectives, 
providing a robust tool for protecting both consumer and organizational interests in the 

online retail ecosystem. 

6.3. Future Directions 

Several avenues exist for extending the current framework. First, community-driven 

open-source improvements can foster iterative refinement, allowing practitioners and 
researchers to contribute new features, optimize model performance, and adapt 
explainability methods for diverse applications. Second, the methodology can be 

extended to cross-border fraud detection, integrating multi-currency transactions, 
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international shipping patterns, and regulatory differences to further enhance global 
resilience. Finally, multi-modal data integration presents an exciting opportunity to 

incorporate additional signals such as textual reviews, payment behavior patterns, and 
device biometrics, enabling a richer contextual understanding of transactional behaviors 

and improving the detection of subtle or emerging fraud patterns. By combining these 
extensions with explainable outputs, future iterations of the pipeline can maintain 
transparency while adapting to increasingly sophisticated threats in the rapidly evolving 

online retail landscape. 
In conclusion, the proposed XAI-integrated hybrid pipeline represents a significant 

advancement in behavioral fraud detection, delivering high accuracy, operational 
efficiency, and interpretability. It provides a scalable and regulatory-compliant 
framework that not only addresses current challenges in online retail fraud but also lays 

the foundation for future innovations and community-driven improvements. 
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