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Abstract: Infrared small target detection (ISTD) aims to segment small targets from infrared images
and is widely applied in military and industrial fields. Although recent deep learning-based
methods have achieved remarkable performance, they often fail when targets are indistinguishable
from complex backgrounds. This is mainly due to the limited use of spatial domain features, which
cannot capture subtle boundary cues, making precise segmentation challenging. To address this, we
propose an Edge-Shape Enhanced Network (ESE-Net), which reinforces edge feature
representations to improve target discrimination in complex infrared scenes. First, we design a
Multiscale Spatial Edge Attention (MSEA) module to strengthen target edges by perceiving
directional gradient changes. To suppress background noise while highlighting target boundaries,
we introduce an Edge Guidance Module (EGM) that extracts edge features in the frequency domain
via a wavelet transform and performs reversible down sampling, discarding low-frequency
components before fusing with spatial features. Furthermore, a Multiscale Group Convolution
Module (MGCM) is integrated in deep layers to preserve target details and mitigate the risk of small
target loss. Experiments on the NUAA-SIRST and IRSTD-1K datasets demonstrate the effectiveness
of our method.

Keywords: infrared small target detection; edge enhancement; spatial-frequency fusion; semantic
segmentation

1. Introduction

Infrared small target detection (IRSTD) is a binary segmentation task that aims to
generate a binary mask as output. Unlike optical imaging, infrared imaging relies on
thermal radiation, often resulting in blurred target edges due to subtle radiometric
transitions between targets and backgrounds. Compared with generic image
segmentation, IRSTD faces additional challenges, such as extremely small target sizes, low
target-background contrast, and heavy background noise.

Due to their low contrast and similarity to surrounding regions, infrared small
targets can be easily overlooked by the human visual system. As illustrated in the top row
of Figure 1, these targets exhibit dim textures and weak contrast, making their texture
features poorly distinguishable. In contrast, shape features-particularly target edges-are
more visually prominent and provide discriminative cues for distinguishing targets from
complex backgrounds. Inspired by this observation, we argue that enhancing edge
representations to emphasize shape information is crucial to mitigate the similarity
between targets and backgrounds. This motivates the following two research questions:
how can shape features be effectively emphasized by enhancing edge representations
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with sufficient spatial and directional information and how can multi-receptive-field
perception be enhanced to increase model adaptability in complex environments?

Figure 1. Small infrared targets in complex backgrounds.

The inherent similarity between infrared small targets and their backgrounds makes
IRSTD more difficult than general detection or segmentation tasks [1-3]. In recent years,
this challenge has attracted growing attention. With the rise of deep learning and the
availability of public datasets, many researchers have proposed sophisticated methods to
tackle IRSTD. Convolutional neural networks (CNNs) have become the dominant
paradigm, offering robust feature learning through adversarial training, multi-level
feature fusion, and integration of edge priors [1-11].

In addition, several recent studies reported in Infrared Physics & Technology have
explored complementary directions, such as multi-perception of target features,
coordinate-based detection strategies, and robust optimization frameworks for small-
target detection, further highlighting the significance of edge, scale, and frequency-
domain modeling for IRSTD [12-14].

Despite their success, conventional CNN-based methods often exhibit weak shape
bias, limiting their ability to capture detailed edge structures and leading to high false
alarm rates [15]. To address this issue, we propose a shape-biased CNN architecture that
emphasizes edge enhancement to incorporate shape information explicitly.

Traditional edge detection techniques (e.g., Sobel, Prewitt, Laplacian) utilize fixed
differential operators to extract edges. While effective to some extent, these methods lack
adaptability to diverse edge geometries due to their limited scale and directional
sensitivity. Recent edge-oriented small-target methods in Infrared Physics & Technology
also emphasize the role of structural cues, such as edge-dilation segmentation and
multiscale local saliency for maritime targets [16].To overcome this limitation, we
introduce a novel Multi-Scale Edge Attention (MSEA) module, which employs fixed
convolution kernels with multiple scales and directions. Combined with a selective fusion
strategy, MSEA enables precise edge enhancement while maintaining spatial diversity
and directionality, resulting in more accurate target-boundary perception.

Although MSEA strengthens structural details, it may also amplify background noise
due to the spatial domain's limited ability to distinguish structural edges from noisy
textures. To address this issue, we propose an Edge-Guided Module (EGM) based on the
Discrete Wavelet Transform (DWT). EGM extracts high-frequency components from the
input image and leverages structural priors to suppress non-structural interference,
enabling accurate edge extraction while reducing background noise.

Moreover, to prevent small targets from vanishing in deeper layers of the network,
we introduce a Multi-Scale Group Convolution Module (MGCM). Positioned in the
deeper stages of the network, MGCM enhances the preservation of small target features
by capturing contextual information at multiple receptive fields.

Based on the MSEA, EGM, and MGCM modules, we construct an end-to-end edge
shape enhancement network, termed ESE-Net, which explicitly strengthens edge
information and improves detection performance in complex backgrounds.
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The main contributions of this work are summarized as follows:

We propose a novel spatial-frequency joint edge enhancement framework. The
proposed EGM complements the MSEA by guiding edge feature extraction in the
frequency domain, thereby improving detection performance under complex background
conditions.

We introduce the MGCM in the deeper network layers to preserve small target
features and suppress irrelevant high-frequency components introduced by DWT, further
enhancing the robustness of the network.

Extensive experiments on two public datasets, NUAA-SIRST and IRSTD-1K,
demonstrate that our proposed method significantly outperforms existing state-of-the-art
IRSTD approaches.

2. Proposed Method
2.1. Overview of the Proposed ESE-Net

The blue region represents the encoder, composed of four stages for feature
extraction, with feature maps denoted as Xg (i=1,2,3,4). The green part consists of block-
wise DWT and the Edge Guidance Module (EGM), with the frequency spectrum output
from EGM denoted as Xgq. The orange section corresponds to the decoder, where feature
maps during upsampling are denoted as Xp, (i=1,2,3,4). The red boxes indicate infrared
small targets. The pink module in the center is the Multi-scale Group Convolution Module
(MGCM), and the yellow module on the left is the Multi-scale Edge Attention Module
(MSEA).

The overall architecture of the proposed ESE-Net is illustrated in Figure 2. To address
the challenges of blurred and indistinct target boundaries in infrared imagery, ESE-Net
enhances edge representations by integrating spatial- and frequency-domain information.
Similar dual-domain strategies have also been discussed in recent studies on IRSTD,
highlighting the importance of combining spatial and spectral information.

Frequency Module
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Figure 2. Overall architecture of the proposed model.

The input image is first processed by the Multi-Scale Edge Attention (MSEA) module,
which employs fixed convolutional kernels at multiple scales to extract edge features from
different receptive fields. In parallel, a frequency-domain branch captures high-frequency
structural details via Haar wavelet transform. Unlike conventional methods that suppress
high-frequency components as noise, we retain the horizontal and vertical subbands-
where small targets are typically concentrated-while discarding the low-frequency
background and diagonal components, thereby preserving structural target information.

To further refine the frequency-domain edge features, we introduce the Edge-Guided
Module (EGM). This module takes multi-scale subbands as input and generates
corresponding multi-level edge guidance maps. These guidance maps are spatially
matched with the decoder features at different stages and fused accordingly, allowing
explicit structural information to be injected during decoding. Through this multi-scale
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edge-guided fusion strategy, EGM enhances salient high-frequency structures while
suppressing background noise, facilitating more accurate target boundary perception.

The backbone of the network consists of an encoder-decoder structure. The encoder
extracts hierarchical features across four stages, and the decoder progressively restores
spatial resolution. At the center of the network, the Multi-Scale Group Convolution
Module (MGCM) is employed to capture contextual information across multiple receptive
fields. This helps to preserve small target features that may otherwise vanish in deeper
layers of the network.

By jointly leveraging spatial and frequency cues, this dual-domain fusion
architecture enables the network to suppress background interference while highlighting
subtle target features, thereby significantly improving detection performance in complex
infrared scenes.

2.2. Edge-Shape Enhancement Modules
2.2.1. Edge-Guided Module

As illustrated in Figure 3, the EGM integrates wavelet-based frequency features with
CNN-derived spatial features. Specifically, given a frequency-domain input XfreqeRMxN 2
(from DWT) and a decoder feature map X SiERMXN *C, the following operations are applied:

Col
b \r\
L

Figure 3. The proposed EGM integrates spatial and frequency information to enhance fused textures,
edges, and fine details.

Xireq 1 fed into the MGCM module to generate an edge feature map GeERMNMS G is
processed by a 3x3 convolution to obtain w(G)ERMXNXC/Z.XSi is also passed through a
3x3 convolution for channel reduction to match C/2, followed by element-wise
multiplication with w(G) .The resulting fused map is further refined via a 3x3
convolution and a Sigmoid activation 6 to obtain a guidance map G eRMNC G isadded
to X to yield a residual-guided feature map, which is concatenated with w(G) and
passed through a 1x1 convolution to produce the updated decoder output Xg, ..

During the upsampling process in the decoder, substantial noise is often introduced,
as shown in the middle column of Figure 4.

Input Image

Before EGM After EGM

Figure 4. Feature map visualization in the decoder. The multi-level fusion of multi-scale edge
guidance maps generated by the EGM effectively enhances target edge information while
significantly suppressing background interference, thereby improving the efficiency of feature
encoding.
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Prior studies have demonstrated that decoder-stage feature fusion effectively
mitigates such interference. Inspired by this, we propose an Edge-Guided Module (EGM)
that leverages hierarchical feature fusion and cross-domain interaction to suppress noise
and enhance target edge details.

The entire process is mathematically formulated as:

Q=5 (/o (w(Xireq)) (X5 ) /)
X =T B(((Xieq)) X5, HQ®X5 )

Here, & and S denote 3x3 and 1x1 convolutions respectively, & represents
element-wise multiplication, "+" denotes addition, and I1 indicates concatenation.

By hierarchically integrating multi-scale edge guidance maps across decoder stages,
the EGM enriches feature representations with fine-grained textures and boundaries,
while effectively suppressing background clutter. As visualized in Figure 4 (right column),
this strategy substantially improves target edge clarity and overall detection accuracy.

2.2.2. Multi-Scale and Multi-Directional Edge Attention (MSEA)

To enhance edge representation and suppress background interference, we propose
the Multi-Scale and Multi-Directional Edge Attention (MSEA) module. This module
employs fixed directional convolutional kernels at multiple scales and orientations to
emphasize target edges while suppressing irrelevant textures-an approach well-suited for
small target detection in infrared imagery. Recent edge-guided approaches for maritime
and aerial IRSTD tasks also support the effectiveness of multi-scale edge priors. MSEA
utilizes three groups of fixed kernels with receptive fields of 7x7, 5x5, and 3x3, respectively.
Each group contains eight directional kernels (e.g., horizontal, vertical, and diagonal),
allowing edge extraction from multiple orientations. The directional response is
computed using:

Ki v Ky v Ka
0 0
U P R
e 0 e O e
K v Ky v Kg

G(/')ngl'x)s*L 1,...8
0Y=GPOG™  i=1,2,34

4
M,..=0 (Z O(z’))
=1

Medgezmax(M3><31M5><5/M7><7)

Here, o(-) denotes the Sigmoid activation. Directional kernels K" extract gradient
responses GY along eight orientations. For each symmetric pair of directions, their
element-wise product oY is computed to enhance bidirectional consistency. The
responses across all four pairs are summed and passed through a sigmoid to generate the
scale-specific edge map M,;,,.

Multi-scale fusion is achieved by taking the maximum activation across different
kernel sizes (3 x 3, 5 x 5,7 x 7), resulting in a consolidated edge attention map Mcqg.. This
map emphasizes salient edges with consistent multi-directional support while
suppressing noisy or spurious gradients.

Additionally, the opposing-direction multiplication introduces local contrast
enhancement, yielding directional contrast maps (denoted as O") for each scale. These
are fused and normalized to produce a final attention map bounded in [0,1], serving as
guidance for edge-aware feature modulation in the subsequent processing stages.



https://pinnaclepubs.com/index.php/EJACI

European Journal of Al, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI

2.2.3. Multi-Receptive Field Perception

Infrared images often exhibit complex and cluttered backgrounds, making small
targets difficult to detect using limited receptive fields. This can lead to high false alarm
rates due to insufficient contextual awareness. While methods like UIU-Net, DNANet,
and RDIAN have explored deeper or wider networks to address this, deeper models incur
higher computational costs, and width-based strategies often struggle to suppress
background-like textures [17]. Some recent works in Infrared Physics & Technology have
also emphasized multi-perception and robust optimization as promising solutions for
enhancing receptive field adaptability [18].

To overcome these limitations, we introduce a Multi-scale Group Convolution
Module (MGCM) (see Figure 5), designed to enhance receptive field diversity while
maintaining efficiency. Inspired by channel-splitting and grouped convolution designs,
the MGCM divides the input feature map [19-21].

= 3

Conv7 X7 Conv7 X7

7 7

Fucon +— + NV

Figure 5. The structure of MGCM.

F into four branches, each processed with convolutions of varying kernel sizes to
capture multi-scale context. The outputs are concatenated with the original input to
preserve both local and global information. The resulting fused tensor is then passed
through a Conv_Block, which consists of a 1 x 1 convolution followed by batch
normalization and ReLU activation, to reduce channel redundancy and enhance feature
interaction. Finally, a Squeeze-and-Excitation (SE) module is applied to adaptively
recalibrate channel-wise feature responses, further boosting discriminative capability [22].

This design enables the model to effectively perceive multi-scale contextual cues,
reducing false positives while retaining essential target features. Compared with
conventional receptive-field enlargement, the proposed MGCM provides a lightweight
yet effective way to improve target discrimination in cluttered infrared scenes [18].

3. Experiments
3.1. Experimental Setup

Datasets: This study uses the NUAA-SIRST and IRSTD-1K datasets for training,
validation, and testing. NUAA-SIRST consists of 427 infrared images of varying sizes. To

avoid overlap between the training, validation, and testing sets, only one representative
image is selected from each infrared sequence. Due to the limited availability of infrared
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sequences, the NUAA-SIRST dataset includes infrared images at a wavelength of 950 nm,
in addition to short-wave and mid-wave infrared images [23]. Many of the targets are very
faint and are hidden in complex backgrounds with significant clutter. Detecting these
targets is challenging, even for humans, and requires a deep semantic understanding of
the entire scene and focused search efforts. On the other hand, IRSTD-1K is a more
challenging dataset, containing 1000 real infrared images, each with a size of 512 x 512
pixels. IRSTD-1K includes a variety of small targets, such as drones, animals, ships, and
vehicles, which can be captured from long distances at various positions [24]. This dataset
covers numerous scenes, with backgrounds including oceans, rivers, fields, mountains,
urban environments, and clouds, all of which contain significant clutter and noise. IRSTD-
1K serves as a comprehensive benchmark for evaluating ISTD methods. For each dataset,
80% of the images are used as the training set, and 20% are used as the test set.
Evaluation Metrics: We use Intersection over Union (IoU) and False Alarm Rate (Fa)

as pixel-level evaluation metrics, and Detection Probability (Pd) to evaluate target-level
performance. Different metrics reveal different aspects of the detector's performance.
Fand Pfocus emphasize recall and false positives, while IoU considers both aspects
simultaneously. Their definitions are as follows:

TP
- T+P-TP

Number of correctly predicted targets
=

IoU

Number of all targets
F _Number of falsely predicted pixels

a

Number of all pixels

3.2. Implementation Details

The proposed method is implemented using the PyTorch framework. Based on
existing works, the input size of the detector is set to 256 x 256. We train the different
models using an RTX4090 GPU with the AdaGrad optimizer. The batch size is set to 4,
and the learning rate is set to 0.05 [25].

3.3. Comparison with Existing Methods

1) Quantitative Comparison. We compare our proposed ESE-Net with both
traditional and deep learning-based infrared small target detection (ISTD) methods.
Traditional methods include:

Filtering-based: Top-Hat, Max-Median

Local contrast-based: WSLCM, TLLCM

Low-rank models: IPI, NRAM, RIPT, PSTNN, MSLSTIPT

Deep learning-based methods include: MDvsFA, ALCNet, ISNet, and DNANet. All
deep learning methods were retrained using official implementations to ensure fair
evaluation on NUAA-SIRST and IRSTD-1K [23-31].

Table 1. presents the quantitative comparison. ESE-Net consistently ranks among the
top three methods across all metrics and datasets, often achieving the best or second-best
performance. Traditional methods generally perform poorly due to their limited hand-
crafted priors, especially on cluttered or low-contrast scenes. Deep learning-based
approaches significantly outperform traditional methods but still struggle with low
target-background contrast, limiting their IoU performance.

Table 1. Quantitative comparison of different IR small target detection methods on IRSTD-1k and
NUAA-SIRST datasets.

Method Description IRSTD-1k NUAA-SIRST
3-8 IoUt  Pi1 F,l IoUt Pp1 F,|
Top-Hat [23] Filtering 10.06 75.11 1432 7.143 79.84 10.12
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Max-Median [24] 6.998 6521 59.73 4172 6920 55.33
WSLCM [25] Local Contrast 3.452 7244 6619 1158 7795 5446
TLLCM [26] 3311 7739 6738 1.029 79.09 5899

IPI [27] 2792 8137 1618 25.67 8555 11.47
NRAM [28] 1525 70.68 1693 1216 7452 13.85
RIPT [29] Low Rank 1411 7755 2831 11.05 79.08 22.61
PSTNN [30] 2457 7199 3526 2240 7795 29.11
MSLSTIPT [31] 1143 79.03 1524 1030 8213 1131
MDyvsFA [3] 4950 8211 80.33 6030 89.35 56.35
ALCNet [5] 62.05 9219 3156 7431 97.34 2021
ISNet [1] Deep Learning 68.77 9556 1539 80.02 99.18 4.92
DNANet [7] 65.71 9184 1761 7754 98.10 2510
ESE-Net (Ours) 70.14 9490 9.034 79.64 99.22 8.549

Our method excels in both pixel-level metrics (IoU, Fa) and object-level metric (Pd).
The Edge Guidance Module (EGM) enhances pixel-level segmentation accuracy by
preserving spatial boundary details through wavelet-based edge extraction, while the
Multi-Scale Grouped Convolution Module (MGCM) improves semantic abstraction and
reduces false positives in complex scenes. The integration of these complementary
modules allows the decoder to simultaneously capture high-level semantics and fine edge
structures, resulting in improved overall detection performance.

Moreover, our Multi-Grained Convolution Module (MGCM) module further refines
feature representation by suppressing irrelevant high-frequency noise while retaining
small target cues. On IRSTD-1K, which contains more challenging real-world scenarios,
our method outperforms others by a large margin, especially in reducing false alarms.

Furthermore, the ROC curves evaluated on the IRSTD-1k dataset are presented in
Figure 6, where our method achieves the highest AUC score. This result clearly
demonstrates the effectiveness of the proposed approach in distinguishing targets from
background, particularly in low false positive rate regions where the model maintains
high detection sensitivity.

1.0 4 — ESE-Net (AUC=0.9479)
ISNet (AUC=0.9384)
- DNANet (AUC=0.9048)
— IPI (AUC=0.7528)
0.8 1
4
a
E
2 0.6
©
o
)
2
=
wn
o)
-4
v 0.4 1
=
=
0.2 1
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (FPR) (x107%)

Figure 6. ROC curves of our CSRNet and other approaches on IRSTD-1k.

2) Visual Comparison. Figure 7 illustrates qualitative comparisons. Detecting small
infrared targets is visually difficult due to their background similarity. As shown, many
state-of-the-art methods either miss targets or introduce false positives, particularly in
low-contrast, cluttered scenes. In contrast, ESE-Net demonstrates strong robustness by
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accurately segmenting true targets while suppressing noise and clutter, even when targets
are visually indistinguishable.

IR Image Top- Hat[23] WSLCM[ZS] ISNet[l] DNANet[?] ESE-| Net[ours]

Figure 7. Visual comparison of detection results on several infrared images. Correctly detected
targets, missed targets, and false alarms are framed by red, blue, and yellow boxes, respectively. A
close-up view of the target is shown in image corners.

In the last two rows of Figure 7, the majority of existing methods fail to correctly
recognize the true target, or mistakenly identify adjacent structures as targets. In contrast,
our network-guided by the Edge Guidance Module (EGM) and refined by the MGCM
module-effectively suppresses irrelevant interferences through frequency-domain feature
extraction. As a result, it successfully distinguishes targets from complex backgrounds.

Importantly, we have designed a Multi-Scale Spatial Edge Attention (MSEA) module
that works in tandem with the EGM. EGM employs wavelet-based or similar frequency-
domain transforms to extract edge features, followed by reversible downsampling to
discard low-frequency interference before spatial fusion. This spatial-frequency
interactive attention mechanism integrates multi-scale spatial information and frequency-
domain edge cues. This approach significantly enhances edge detection quality and
suppresses noise in complex backgrounds.

3.4. Ablation Studies

To comprehensively evaluate the contribution of each component in our proposed
network and their synergistic effects, we conducted a series of ablation experiments. These
experiments include module-level comparisons, edge enhancement analysis, and an in-
depth investigation into the number of edge-guided feature fusion stages.

1)Multiscale Design and Edge Enhancement in MSEA. To enhance the edge
representation ability of the network, we design a Multi-Scale Edge Attention (MSEA)
module that applies fixed convolutional filters at multiple scales and directions. This
design aims to capture edge features under diverse target sizes and background
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conditions. We conduct ablation experiments to validate the necessity of the multiscale
design and evaluate the effectiveness of MSEA in enhancing structural edge information.

As shown in Table 2, we conducted experiments to explore the impact of kernel sizes
in the parameter-fixed convolution layers within the MSEA module. Specifically, as the
kernel size increases, the IoU score gradually decreases, while the detection probability
(Pd) increases, and the false alarm rate (Fa) first decreases and then increases. The
inconsistency among these metrics indicates that a single-scale convolution kernel lacks
robustness in detection performance, which can be attributed to the diverse size
distribution of infrared small targets. Therefore, we adopt a multiscale design, enabling
the network to achieve optimal performance across all evaluation metrics.

Table 2. Result of Different Scales of The Patch In MSEA.

# scale of the patch IoU (%) 1 Pd (%) 1 Fa (%) |
3 67.43 93.11 15.43
5 67.21 93.73 12.84
7 66.84 93.87 16.61
3,5,7 70.14 94.90 9.03

In addition to quantitative analysis, we provide a visual comparison of edge
enhancement effects in Figure 8, the edge maps generated by our proposed method
exhibit sharper and more continuous contours compared to traditional edge detectors.
This clear enhancement of edge structure provides more precise boundary information,
which is beneficial for the network to learn discriminative edge features.

IR Image Ours (MSEA) Sobel Prewitt Laplacian

Figure 8. Comparison of edge maps generated by different methods. The proposed MSEA module
achieves more precise and continuous edge enhancement compared to traditional operators.

2) Effect of Edge-Guided Feature Fusion at Different Decoder Stages.To further
investigate the effectiveness of the proposed EGM module, we conduct experiments that
vary the number of decoder stages fused with the edge guidance map. Specifically, we
test the integration of 1 to 4 decoder stages (denoted as X, to Xp,), while keeping all
other settings unchanged to ensure fair comparison.

1-stage fusion: Edge guidance is introduced only at the top decoder stage (Decoder
Stage 4, Xp,).

2-stage fusion: Edge information is fused with Decoder Stage 3 and 4(Xp,), Xp,).

3-stage fusion: Further integration at Decoder Stage 2 (Xp,).

4-stage fusion: Full-scale fusion across all decoder stages (Xp,-Xp,).

The performance comparison is presented in Table 3.

Table 3. Ablation Study on the Number of Edge-Guided Feature Fusion Stages.

# Fusion Stages IoU (%) 1 Pd (%) 1 Fa (%) |
1 66.85 91.02 22.37
2 68.42 92.73 12.84
3 69.58 94.10 10.27
4 70.14 94.90 9.03
Vol. 2 No. 1 (2026) 10
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