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Abstract: Infrared small target detection (ISTD) aims to segment small targets from infrared images 
and is widely applied in military and industrial fields. Although recent deep learning-based 
methods have achieved remarkable performance, they often fail when targets are indistinguishable 
from complex backgrounds. This is mainly due to the limited use of spatial domain features, which 
cannot capture subtle boundary cues, making precise segmentation challenging. To address this, we 
propose an Edge-Shape Enhanced Network (ESE-Net), which reinforces edge feature 
representations to improve target discrimination in complex infrared scenes. First, we design a 
Multiscale Spatial Edge Attention (MSEA) module to strengthen target edges by perceiving 
directional gradient changes. To suppress background noise while highlighting target boundaries, 
we introduce an Edge Guidance Module (EGM) that extracts edge features in the frequency domain 
via a wavelet transform and performs reversible down sampling, discarding low-frequency 
components before fusing with spatial features. Furthermore, a Multiscale Group Convolution 
Module (MGCM) is integrated in deep layers to preserve target details and mitigate the risk of small 
target loss. Experiments on the NUAA-SIRST and IRSTD-1K datasets demonstrate the effectiveness 
of our method. 

Keywords: infrared small target detection; edge enhancement; spatial-frequency fusion; semantic 
segmentation 
 

1. Introduction 
Infrared small target detection (IRSTD) is a binary segmentation task that aims to 

generate a binary mask as output. Unlike optical imaging, infrared imaging relies on 
thermal radiation, often resulting in blurred target edges due to subtle radiometric 
transitions between targets and backgrounds. Compared with generic image 
segmentation, IRSTD faces additional challenges, such as extremely small target sizes, low 
target-background contrast, and heavy background noise. 

Due to their low contrast and similarity to surrounding regions, infrared small 
targets can be easily overlooked by the human visual system. As illustrated in the top row 
of Figure 1, these targets exhibit dim textures and weak contrast, making their texture 
features poorly distinguishable. In contrast, shape features-particularly target edges-are 
more visually prominent and provide discriminative cues for distinguishing targets from 
complex backgrounds. Inspired by this observation, we argue that enhancing edge 
representations to emphasize shape information is crucial to mitigate the similarity 
between targets and backgrounds. This motivates the following two research questions: 
how can shape features be effectively emphasized by enhancing edge representations 
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with sufficient spatial and directional information and how can multi-receptive-field 
perception be enhanced to increase model adaptability in complex environments? 

   
Figure 1. Small infrared targets in complex backgrounds. 

The inherent similarity between infrared small targets and their backgrounds makes 
IRSTD more difficult than general detection or segmentation tasks [1-3]. In recent years, 
this challenge has attracted growing attention. With the rise of deep learning and the 
availability of public datasets, many researchers have proposed sophisticated methods to 
tackle IRSTD. Convolutional neural networks (CNNs) have become the dominant 
paradigm, offering robust feature learning through adversarial training, multi-level 
feature fusion, and integration of edge priors [1-11]. 

In addition, several recent studies reported in Infrared Physics & Technology have 
explored complementary directions, such as multi-perception of target features, 
coordinate-based detection strategies, and robust optimization frameworks for small-
target detection, further highlighting the significance of edge, scale, and frequency-
domain modeling for IRSTD [12-14]. 

Despite their success, conventional CNN-based methods often exhibit weak shape 
bias, limiting their ability to capture detailed edge structures and leading to high false 
alarm rates [15]. To address this issue, we propose a shape-biased CNN architecture that 
emphasizes edge enhancement to incorporate shape information explicitly. 

Traditional edge detection techniques (e.g., Sobel, Prewitt, Laplacian) utilize fixed 
differential operators to extract edges. While effective to some extent, these methods lack 
adaptability to diverse edge geometries due to their limited scale and directional 
sensitivity. Recent edge-oriented small-target methods in Infrared Physics & Technology 
also emphasize the role of structural cues, such as edge-dilation segmentation and 
multiscale local saliency for maritime targets [16].To overcome this limitation, we 
introduce a novel Multi-Scale Edge Attention (MSEA) module, which employs fixed 
convolution kernels with multiple scales and directions. Combined with a selective fusion 
strategy, MSEA enables precise edge enhancement while maintaining spatial diversity 
and directionality, resulting in more accurate target-boundary perception. 

Although MSEA strengthens structural details, it may also amplify background noise 
due to the spatial domain's limited ability to distinguish structural edges from noisy 
textures. To address this issue, we propose an Edge-Guided Module (EGM) based on the 
Discrete Wavelet Transform (DWT). EGM extracts high-frequency components from the 
input image and leverages structural priors to suppress non-structural interference, 
enabling accurate edge extraction while reducing background noise. 

Moreover, to prevent small targets from vanishing in deeper layers of the network, 
we introduce a Multi-Scale Group Convolution Module (MGCM). Positioned in the 
deeper stages of the network, MGCM enhances the preservation of small target features 
by capturing contextual information at multiple receptive fields. 

Based on the MSEA, EGM, and MGCM modules, we construct an end-to-end edge 
shape enhancement network, termed ESE-Net, which explicitly strengthens edge 
information and improves detection performance in complex backgrounds. 
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The main contributions of this work are summarized as follows: 
We propose a novel spatial-frequency joint edge enhancement framework. The 

proposed EGM complements the MSEA by guiding edge feature extraction in the 
frequency domain, thereby improving detection performance under complex background 
conditions. 

We introduce the MGCM in the deeper network layers to preserve small target 
features and suppress irrelevant high-frequency components introduced by DWT, further 
enhancing the robustness of the network. 

Extensive experiments on two public datasets, NUAA-SIRST and IRSTD-1K, 
demonstrate that our proposed method significantly outperforms existing state-of-the-art 
IRSTD approaches. 

2. Proposed Method 
2.1. Overview of the Proposed ESE-Net 

The blue region represents the encoder, composed of four stages for feature 
extraction, with feature maps denoted as XSi (i=1,2,3,4). The green part consists of block-
wise DWT and the Edge Guidance Module (EGM), with the frequency spectrum output 
from EGM denoted as Xfreq. The orange section corresponds to the decoder, where feature 
maps during upsampling are denoted as XDi (i=1,2,3,4). The red boxes indicate infrared 
small targets. The pink module in the center is the Multi-scale Group Convolution Module 
(MGCM), and the yellow module on the left is the Multi-scale Edge Attention Module 
(MSEA). 

The overall architecture of the proposed ESE-Net is illustrated in Figure 2. To address 
the challenges of blurred and indistinct target boundaries in infrared imagery, ESE-Net 
enhances edge representations by integrating spatial- and frequency-domain information. 
Similar dual-domain strategies have also been discussed in recent studies on IRSTD, 
highlighting the importance of combining spatial and spectral information. 

 
Figure 2. Overall architecture of the proposed model. 

The input image is first processed by the Multi-Scale Edge Attention (MSEA) module, 
which employs fixed convolutional kernels at multiple scales to extract edge features from 
different receptive fields. In parallel, a frequency-domain branch captures high-frequency 
structural details via Haar wavelet transform. Unlike conventional methods that suppress 
high-frequency components as noise, we retain the horizontal and vertical subbands-
where small targets are typically concentrated-while discarding the low-frequency 
background and diagonal components, thereby preserving structural target information. 

To further refine the frequency-domain edge features, we introduce the Edge-Guided 
Module (EGM). This module takes multi-scale subbands as input and generates 
corresponding multi-level edge guidance maps. These guidance maps are spatially 
matched with the decoder features at different stages and fused accordingly, allowing 
explicit structural information to be injected during decoding. Through this multi-scale 
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edge-guided fusion strategy, EGM enhances salient high-frequency structures while 
suppressing background noise, facilitating more accurate target boundary perception. 

The backbone of the network consists of an encoder-decoder structure. The encoder 
extracts hierarchical features across four stages, and the decoder progressively restores 
spatial resolution. At the center of the network, the Multi-Scale Group Convolution 
Module (MGCM) is employed to capture contextual information across multiple receptive 
fields. This helps to preserve small target features that may otherwise vanish in deeper 
layers of the network. 

By jointly leveraging spatial and frequency cues, this dual-domain fusion 
architecture enables the network to suppress background interference while highlighting 
subtle target features, thereby significantly improving detection performance in complex 
infrared scenes. 

2.2. Edge-Shape Enhancement Modules 
2.2.1. Edge-Guided Module 

As illustrated in Figure 3, the EGM integrates wavelet-based frequency features with 
CNN-derived spatial features. Specifically, given a frequency-domain input Xfreq∈RM×N×2 
(from DWT) and a decoder feature map XSi∈RM×N×C, the following operations are applied: 

 
Figure 3. The proposed EGM integrates spatial and frequency information to enhance fused textures, 
edges, and fine details. 

Xfreq is fed into the MGCM module to generate an edge feature map G∈RM×N×8.G is 
processed by a 3×3 convolution to obtain w(G)∈RM×N×C/2 .XSi  is also passed through a 
3×3  convolution for channel reduction to match C/2 , followed by element-wise 
multiplication with w(G) .The resulting fused map is further refined via a 3×3 
convolution and a Sigmoid activation δ to obtain a guidance map G'∈RM×N×C.G' is added 
to XSi  to yield a residual-guided feature map, which is concatenated with w(G) and 
passed through a 1×1 convolution to produce the updated decoder output XSi+1. 

During the upsampling process in the decoder, substantial noise is often introduced, 
as shown in the middle column of Figure 4. 

 
Figure 4. Feature map visualization in the decoder. The multi-level fusion of multi-scale edge 
guidance maps generated by the EGM effectively enhances target edge information while 
significantly suppressing background interference, thereby improving the efficiency of feature 
encoding. 

Input Image Before EGM After EGM 
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Prior studies have demonstrated that decoder-stage feature fusion effectively 
mitigates such interference. Inspired by this, we propose an Edge-Guided Module (EGM) 
that leverages hierarchical feature fusion and cross-domain interaction to suppress noise 
and enhance target edge details. 

The entire process is mathematically formulated as: 
Q=δ�α�α(w(Xfreq))⊗α(XSi)�� 

XSi+1=α�Π�β(α(w(Xfreq))),XSi+Q⊗XSi
�� 

Here, α  and β  denote 3×3  and 1×1  convolutions respectively, ⊗  represents 
element-wise multiplication, "+" denotes addition, and Π indicates concatenation. 

By hierarchically integrating multi-scale edge guidance maps across decoder stages, 
the EGM enriches feature representations with fine-grained textures and boundaries, 
while effectively suppressing background clutter. As visualized in Figure 4 (right column), 
this strategy substantially improves target edge clarity and overall detection accuracy. 

2.2.2. Multi-Scale and Multi-Directional Edge Attention (MSEA) 
To enhance edge representation and suppress background interference, we propose 

the Multi-Scale and Multi-Directional Edge Attention (MSEA) module. This module 
employs fixed directional convolutional kernels at multiple scales and orientations to 
emphasize target edges while suppressing irrelevant textures-an approach well-suited for 
small target detection in infrared imagery. Recent edge-guided approaches for maritime 
and aerial IRSTD tasks also support the effectiveness of multi-scale edge priors. MSEA 
utilizes three groups of fixed kernels with receptive fields of 7×7, 5×5, and 3×3, respectively. 
Each group contains eight directional kernels (e.g., horizontal, vertical, and diagonal), 
allowing edge extraction from multiple orientations. The directional response is 
computed using: 

Ks×s
(j) =

⎣
⎢
⎢
⎢
⎡
κ1 ⋯ κ2 ⋯ κ3
⋯ 0 ⋯ 0 ⋯
κ4 ⋯ 1 ⋯ κ5
⋯ 0 ⋯ 0 ⋯
κ6 ⋯ κ7 ⋯ κ8⎦

⎥
⎥
⎥
⎤

, κj=-1 

G(j)=Ks×s
(j) *I, j=1,. . .,8 

O(i)=G(i)⊙G(i+4), i=1,2,3,4 

Ms×s=σ��O(i)
4

i=1

� 

Medge=max(M3×3,M5×5,M7×7) 

Here, σ(⋅) denotes the Sigmoid activation. Directional kernels K(j) extract gradient 
responses G(j)  along eight orientations. For each symmetric pair of directions, their 
element-wise product O(i)  is computed to enhance bidirectional consistency. The 
responses across all four pairs are summed and passed through a sigmoid to generate the 
scale-specific edge map Ms×s. 

Multi-scale fusion is achieved by taking the maximum activation across different 
kernel sizes (3 × 3, 5 × 5, 7 × 7), resulting in a consolidated edge attention map Medge. This 
map emphasizes salient edges with consistent multi-directional support while 
suppressing noisy or spurious gradients. 

Additionally, the opposing-direction multiplication introduces local contrast 
enhancement, yielding directional contrast maps (denoted as O(i)) for each scale. These 
are fused and normalized to produce a final attention map bounded in [0,1], serving as 
guidance for edge-aware feature modulation in the subsequent processing stages. 
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2.2.3. Multi-Receptive Field Perception 
Infrared images often exhibit complex and cluttered backgrounds, making small 

targets difficult to detect using limited receptive fields. This can lead to high false alarm 
rates due to insufficient contextual awareness. While methods like UIU-Net, DNANet, 
and RDIAN have explored deeper or wider networks to address this, deeper models incur 
higher computational costs, and width-based strategies often struggle to suppress 
background-like textures [17]. Some recent works in Infrared Physics & Technology have 
also emphasized multi-perception and robust optimization as promising solutions for 
enhancing receptive field adaptability [18]. 

To overcome these limitations, we introduce a Multi-scale Group Convolution 
Module (MGCM) (see Figure 5), designed to enhance receptive field diversity while 
maintaining efficiency. Inspired by channel-splitting and grouped convolution designs, 
the MGCM divides the input feature map [19-21]. 

 
Figure 5. The structure of MGCM. 

F into four branches, each processed with convolutions of varying kernel sizes to 
capture multi-scale context. The outputs are concatenated with the original input to 
preserve both local and global information. The resulting fused tensor is then passed 
through a Conv_Block, which consists of a 1 × 1 convolution followed by batch 
normalization and ReLU activation, to reduce channel redundancy and enhance feature 
interaction. Finally, a Squeeze-and-Excitation (SE) module is applied to adaptively 
recalibrate channel-wise feature responses, further boosting discriminative capability [22]. 

This design enables the model to effectively perceive multi-scale contextual cues, 
reducing false positives while retaining essential target features. Compared with 
conventional receptive-field enlargement, the proposed MGCM provides a lightweight 
yet effective way to improve target discrimination in cluttered infrared scenes [18]. 

3. Experiments 
3.1. Experimental Setup 

Datasets: This study uses the NUAA-SIRST and IRSTD-1K datasets for training, 
validation, and testing. NUAA-SIRST consists of 427 infrared images of varying sizes. To 
avoid overlap between the training, validation, and testing sets, only one representative 
image is selected from each infrared sequence. Due to the limited availability of infrared 
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sequences, the NUAA-SIRST dataset includes infrared images at a wavelength of 950 nm, 
in addition to short-wave and mid-wave infrared images [23]. Many of the targets are very 
faint and are hidden in complex backgrounds with significant clutter. Detecting these 
targets is challenging, even for humans, and requires a deep semantic understanding of 
the entire scene and focused search efforts. On the other hand, IRSTD-1K is a more 
challenging dataset, containing 1000 real infrared images, each with a size of 512 × 512 
pixels. IRSTD-1K includes a variety of small targets, such as drones, animals, ships, and 
vehicles, which can be captured from long distances at various positions [24]. This dataset 
covers numerous scenes, with backgrounds including oceans, rivers, fields, mountains, 
urban environments, and clouds, all of which contain significant clutter and noise. IRSTD-
1K serves as a comprehensive benchmark for evaluating ISTD methods. For each dataset, 
80% of the images are used as the training set, and 20% are used as the test set. 

Evaluation Metrics: We use Intersection over Union (IoU) and False Alarm Rate (Fa) 
as pixel-level evaluation metrics, and Detection Probability (Pd) to evaluate target-level 
performance. Different metrics reveal different aspects of the detector's performance. 
Fand Pfocus emphasize recall and false positives, while IoU considers both aspects 
simultaneously. Their definitions are as follows: 

IoU=
TP

T+P-TP 

Pd=
Number of correctly predicted targets

Number of all targets  

Fa=
Number of falsely predicted pixels

Number of all pixels  

3.2. Implementation Details 
The proposed method is implemented using the PyTorch framework. Based on 

existing works, the input size of the detector is set to 256 × 256. We train the different 
models using an RTX4090 GPU with the AdaGrad optimizer. The batch size is set to 4, 
and the learning rate is set to 0.05 [25]. 

3.3. Comparison with Existing Methods 
1) Quantitative Comparison. We compare our proposed ESE-Net with both 

traditional and deep learning-based infrared small target detection (ISTD) methods. 
Traditional methods include: 

Filtering-based: Top-Hat, Max-Median 
Local contrast-based: WSLCM, TLLCM 
Low-rank models: IPI, NRAM, RIPT, PSTNN, MSLSTIPT 
Deep learning-based methods include: MDvsFA, ALCNet, ISNet, and DNANet. All 

deep learning methods were retrained using official implementations to ensure fair 
evaluation on NUAA-SIRST and IRSTD-1K [23-31]. 

Table 1. presents the quantitative comparison. ESE-Net consistently ranks among the 
top three methods across all metrics and datasets, often achieving the best or second-best 
performance. Traditional methods generally perform poorly due to their limited hand-
crafted priors, especially on cluttered or low-contrast scenes. Deep learning-based 
approaches significantly outperform traditional methods but still struggle with low 
target-background contrast, limiting their IoU performance. 

Table 1. Quantitative comparison of different IR small target detection methods on IRSTD-1k and 
NUAA-SIRST datasets. 

Method Description IRSTD-1k NUAA-SIRST 
3-8  IoU↑ Pd↑ Fa↓ IoU↑ Pd↑ Fa↓ 

Top-Hat [23] Filtering 10.06 75.11 1432 7.143 79.84 10.12 
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Max-Median [24] 6.998 65.21 59.73 4.172 69.20 55.33 
WSLCM [25] 

Local Contrast 
3.452 72.44 6619 1.158 77.95 5446 

TLLCM [26] 3.311 77.39 6738 1.029 79.09 5899 
IPI [27] 

Low Rank 

27.92 81.37 16.18 25.67 85.55 11.47 
NRAM [28] 15.25 70.68 16.93 12.16 74.52 13.85 
RIPT [29] 14.11 77.55 28.31 11.05 79.08 22.61 

PSTNN [30] 24.57 71.99 35.26 22.40 77.95 29.11 
MSLSTIPT [31] 11.43 79.03 1524 10.30 82.13 1131 

MDvsFA [3] 

Deep Learning 

49.50 82.11 80.33 60.30 89.35 56.35 
ALCNet [5] 62.05 92.19 31.56 74.31 97.34 20.21 

ISNet [1] 68.77 95.56 15.39 80.02 99.18 4.92 
DNANet [7] 65.71 91.84 17.61 77.54 98.10 2.510 

ESE-Net (Ours) 70.14 94.90 9.034 79.64 99.22 8.549 
Our method excels in both pixel-level metrics (IoU, Fa) and object-level metric (Pd). 

The Edge Guidance Module (EGM) enhances pixel-level segmentation accuracy by 
preserving spatial boundary details through wavelet-based edge extraction, while the 
Multi-Scale Grouped Convolution Module (MGCM) improves semantic abstraction and 
reduces false positives in complex scenes. The integration of these complementary 
modules allows the decoder to simultaneously capture high-level semantics and fine edge 
structures, resulting in improved overall detection performance. 

Moreover, our Multi-Grained Convolution Module (MGCM) module further refines 
feature representation by suppressing irrelevant high-frequency noise while retaining 
small target cues. On IRSTD-1K, which contains more challenging real-world scenarios, 
our method outperforms others by a large margin, especially in reducing false alarms. 

Furthermore, the ROC curves evaluated on the IRSTD-1k dataset are presented in 
Figure 6, where our method achieves the highest AUC score. This result clearly 
demonstrates the effectiveness of the proposed approach in distinguishing targets from 
background, particularly in low false positive rate regions where the model maintains 
high detection sensitivity. 

 
Figure 6. ROC curves of our CSRNet and other approaches on IRSTD-1k. 

2) Visual Comparison. Figure 7 illustrates qualitative comparisons. Detecting small 
infrared targets is visually difficult due to their background similarity. As shown, many 
state-of-the-art methods either miss targets or introduce false positives, particularly in 
low-contrast, cluttered scenes. In contrast, ESE-Net demonstrates strong robustness by 
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accurately segmenting true targets while suppressing noise and clutter, even when targets 
are visually indistinguishable. 

 
Figure 7. Visual comparison of detection results on several infrared images. Correctly detected 
targets, missed targets, and false alarms are framed by red, blue, and yellow boxes, respectively. A 
close-up view of the target is shown in image corners. 

In the last two rows of Figure 7, the majority of existing methods fail to correctly 
recognize the true target, or mistakenly identify adjacent structures as targets. In contrast, 
our network-guided by the Edge Guidance Module (EGM) and refined by the MGCM 
module-effectively suppresses irrelevant interferences through frequency-domain feature 
extraction. As a result, it successfully distinguishes targets from complex backgrounds. 

Importantly, we have designed a Multi‑Scale Spatial Edge Attention (MSEA) module 
that works in tandem with the EGM. EGM employs wavelet-based or similar frequency-
domain transforms to extract edge features, followed by reversible downsampling to 
discard low-frequency interference before spatial fusion. This spatial-frequency 
interactive attention mechanism integrates multi-scale spatial information and frequency-
domain edge cues. This approach significantly enhances edge detection quality and 
suppresses noise in complex backgrounds. 

3.4. Ablation Studies 
To comprehensively evaluate the contribution of each component in our proposed 

network and their synergistic effects, we conducted a series of ablation experiments. These 
experiments include module-level comparisons, edge enhancement analysis, and an in-
depth investigation into the number of edge-guided feature fusion stages. 

1)Multiscale Design and Edge Enhancement in MSEA. To enhance the edge 
representation ability of the network, we design a Multi-Scale Edge Attention (MSEA) 
module that applies fixed convolutional filters at multiple scales and directions. This 
design aims to capture edge features under diverse target sizes and background 

 

 

 

 

  

 

https://pinnaclepubs.com/index.php/EJACI


European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI 
 

Vol. 2 No. 1 (2026) 10  

conditions. We conduct ablation experiments to validate the necessity of the multiscale 
design and evaluate the effectiveness of MSEA in enhancing structural edge information. 

As shown in Table 2, we conducted experiments to explore the impact of kernel sizes 
in the parameter-fixed convolution layers within the MSEA module. Specifically, as the 
kernel size increases, the IoU score gradually decreases, while the detection probability 
(Pd) increases, and the false alarm rate (Fa) first decreases and then increases. The 
inconsistency among these metrics indicates that a single-scale convolution kernel lacks 
robustness in detection performance, which can be attributed to the diverse size 
distribution of infrared small targets. Therefore, we adopt a multiscale design, enabling 
the network to achieve optimal performance across all evaluation metrics. 

Table 2. Result of Different Scales of The Patch In MSEA. 

# scale of the patch IoU (%) ↑ Pd (%) ↑ Fa (%) ↓ 
3 67.43 93.11 15.43 
5 67.21 93.73 12.84 
7 66.84 93.87 16.61 

3,5,7 70.14 94.90 9.03 
In addition to quantitative analysis, we provide a visual comparison of edge 

enhancement effects in Figure 8, the edge maps generated by our proposed method 
exhibit sharper and more continuous contours compared to traditional edge detectors. 
This clear enhancement of edge structure provides more precise boundary information, 
which is beneficial for the network to learn discriminative edge features. 

 
Figure 8. Comparison of edge maps generated by different methods. The proposed MSEA module 
achieves more precise and continuous edge enhancement compared to traditional operators. 

2) Effect of Edge-Guided Feature Fusion at Different Decoder Stages.To further 
investigate the effectiveness of the proposed EGM module, we conduct experiments that 
vary the number of decoder stages fused with the edge guidance map. Specifically, we 
test the integration of 1 to 4 decoder stages (denoted as XD1 to XD4), while keeping all 
other settings unchanged to ensure fair comparison. 

1-stage fusion: Edge guidance is introduced only at the top decoder stage (Decoder 
Stage 4, XD4). 

2-stage fusion: Edge information is fused with Decoder Stage 3 and 4(XD3), XD4). 
3-stage fusion: Further integration at Decoder Stage 2 (XD2). 
4-stage fusion: Full-scale fusion across all decoder stages (XD1-XD4). 
The performance comparison is presented in Table 3. 

Table 3. Ablation Study on the Number of Edge-Guided Feature Fusion Stages. 

# Fusion Stages IoU (%) ↑ Pd (%) ↑ Fa (%) ↓ 
1 66.85 91.02 22.37 
2 68.42 92.73 12.84 
3 69.58 94.10 10.27 
4 70.14 94.90 9.03 

IR Image Ours (MSEA) Sobel Prewitt Laplacian 
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These results clearly demonstrate that edge information is most effective when 
applied consistently throughout the decoder, rather than at a single or partial stage. 
Therefore, we adopt 4-stage fusion as the default configuration in our final model. 

3) Effectiveness of Individual Modules in ESE-Net. We evaluate the contribution of 
the Multi-Scale Edge Aggregation Module (MSEA), Multi-Grained Convolution Module 
(MGCM), and Edge-Guided Module (EGM) through module-wise ablation. Table 4 
summarizes the results. 

Table 4. Ablation Study of MSEA, MGCM, and EGM. 

MSEA MGCM EGM IoU Pd Fa (×10-6) 
   63.28 87.43 21.54 
✓   66.75 89.32 17.42 
 ✓  65.93 88.70 18.89 
  ✓ 66.20 89.04 17.96 
✓ ✓  68.92 92.37 13.51 
✓  ✓ 69.40 93.20 12.78 
 ✓ ✓ 69.17 92.88 13.05 
✓ ✓ ✓ 70.14 94.90 9.03 

The results clearly show that each module contributes positively to performance. 
When all three modules are integrated, the network achieves the best results in terms of 
IoU, Pd, and Fa. 

As observed, the detection performance steadily improves with an increasing 
number of fusion stages. IoU increases from 66.85% to 70.14%, and Pd reaches 94.90%. 
Notably, the false alarm rate (Fa) drops significantly from 22.37 to 9.03, indicating that 
multi-level edge-guided fusion enhances both semantic understanding and edge 
preservation, improving target localization while effectively suppressing background 
noise. 

However, we also observe diminishing returns beyond the third stage, suggesting 
that excessive fusion may introduce feature redundancy or lead to overfitting. Therefore, 
a trade-off between accuracy and model complexity must be considered in network 
design. 

4. Conclusion 
In this paper, we propose a novel Edge-Shape Enhanced Network (ESE-Net) for 

infrared small target detection, which leverages edge information to enhance the 
discriminability of small targets in complex infrared scenes. Specifically, we design a 
Multiscale Spatial Edge Attention (MSEA) module to enhance edge contours by capturing 
multiscale directional gradients. To further highlight target boundaries and suppress 
background interference, we introduce an Edge Guidance Module (EGM) that utilizes 
frequency-domain edge cues via wavelet transform and selective fusion. Additionally, a 
Multiscale Group Convolution Module (MGCM) is deployed to preserve fine target 
details and improve robustness against target omission. Extensive experiments on 
NUAA-SIRST and IRSTD-1K datasets validate the effectiveness of our proposed approach, 
achieving superior performance compared with existing methods. Future work will 
explore lightweight extensions of the network and real-time deployment on edge devices. 
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