
European Journal of AI,
Computing & Informatics

Vol. 1 No. 3 2025

Vol. 1 No. 3 (2025) 93

Aeticle

Application of Network Security Vulnerability Detection and
Repair Process Optimization in Software Development
Shuang Yuan 1,*

1 Technology Risk Management, American Airlines, Fort Worth, Texas, 76155, United States
* Correspondence: Shuang Yuan, Technology Risk Management, American Airlines, Fort Worth, Texas,

76155, United States

Abstract: Ensuring system safety and maintaining high-quality software development critically
depend on the timely identification and rapid remediation of network security vulnerabilities. In
this study, an efficient operating framework is established based on the optimization of the
vulnerability management process. From the dual perspectives of vulnerability detection and repair,
a comprehensive process improvement is implemented, forming a technical framework that
integrates both detection and repair optimization modules. This framework emphasizes security
robustness while offering flexible scalability, enabling it to adapt to varying software environments
and evolving threat landscapes. During the software development lifecycle, the framework
leverages the coordinated application of multiple tools, including automated repair technologies,
intelligent detection mechanisms, and cross-department collaboration strategies. Such integration
significantly enhances both the efficiency and accuracy of handling security vulnerabilities.
Furthermore, the proposed approach supports continuous monitoring and iterative refinement,
ensuring that potential security risks are proactively addressed, and that the overall reliability and
stability of software systems are improved. By systematically combining detection, repair, and
collaborative optimization, the framework provides a practical and scalable solution for
strengthening software security and supporting sustainable software development.

Keywords: network security; vulnerability detection; bug repair; repair process; software
development

1. Introduction
In today's era of rapid digitization and pervasive information technology, software

security plays a critical role in shaping both organizational operations and societal
outcomes. As software systems grow in complexity and scale, the types and severity of
network security vulnerabilities are simultaneously increasing. These vulnerabilities not
only threaten the integrity and confidentiality of data but also pose risks to system
availability, business continuity, and user trust.

Traditional approaches to managing security vulnerabilities typically rely on manual
detection, isolated patching, and reactive remediation. While these methods can address
specific issues, they often suffer from inefficiencies, human error, and the inability to
capture complex or latent vulnerabilities. In large-scale software projects or environments
following agile and continuous integration/continuous deployment (CI/CD)
methodologies, the limitations of manual vulnerability management are particularly
pronounced. Teams may overlook critical security risks, resulting in potential breaches or
operational failures that could have been prevented through proactive strategies [1].

Received: 29 August 2025

Revised: 18 September 2025

Accepted: 29 October 2025

Published: 31 October 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Open Access

European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI

Vol. 1 No. 3 (2025) 94

To address these challenges, modern approaches increasingly emphasize automation,
intelligence, and collaborative processes. Automated vulnerability detection tools can
continuously scan codebases, network environments, and system configurations to
identify potential risks in real-time. Machine learning and artificial intelligence techniques
further enhance detection by analyzing patterns, predicting emerging threats, and
prioritizing remediation based on risk impact. Meanwhile, collaborative platforms allow
multiple stakeholders-developers, security engineers, and operations personnel-to
coordinate vulnerability management throughout the entire software lifecycle, from
discovery to verification and patch deployment.

By integrating automated, intelligent, and collaborative technologies, organizations
can achieve a more comprehensive and proactive approach to security management. This
approach not only improves the efficiency and quality of vulnerability detection and
remediation but also strengthens overall system resilience. Moreover, as digital
ecosystems expand to include cloud services, Internet of Things (IoT) devices, and
interconnected operational technologies, such holistic strategies become essential for
maintaining trust, ensuring compliance, and minimizing operational disruptions [2].

In summary, the evolution from reactive, manual security practices toward
automated, data-driven, and collaborative vulnerability management represents a
necessary transformation for modern software development. By embracing these
strategies, organizations can safeguard complex digital infrastructures while supporting
agile innovation and sustainable growth.

2. Optimization Method of Network Security Vulnerability Detection and Repair
Process
2.1. Optimization Process of Vulnerability Detection

Optimizing the vulnerability detection process requires balancing accuracy,
efficiency, and coverage. A comprehensive approach combines static and dynamic
analysis methods. Static code review allows for the rapid identification of potential defects
in programming logic, code structure, and security patterns, while dynamic testing
monitors system behavior and risk points during execution, capturing vulnerabilities that
only emerge at runtime.

Artificial intelligence, particularly machine learning techniques, can further enhance
detection accuracy by predicting the likelihood and severity of potential vulnerabilities
based on historical data and code patterns. Integrating automated code scanning,
penetration testing, and modular analysis pipelines allows the system to progressively
detect and classify vulnerabilities, significantly reducing the reliance on manual
inspection.

To meet the demands of modern software development, especially agile and CI/CD
environments, the vulnerability detection process should evolve toward real-time
monitoring. Continuous integration of scanning and testing tools enables developers to
receive immediate feedback on security risks as code is written and deployed. This
approach not only improves the comprehensiveness and reliability of detection but also
significantly accelerates the inspection cycle, providing a dual benefit of higher efficiency
and enhanced accuracy [3].

Furthermore, intelligent orchestration of detection tasks allows resources to be
dynamically allocated based on system complexity and workload, ensuring that critical
modules receive priority attention. By implementing such an optimized detection
workflow, organizations can establish a proactive security posture, catching
vulnerabilities early and reducing the likelihood of exploitation in production systems.

2.2. Optimization Process of Vulnerability Repair
Effective and efficient repair of security vulnerabilities is essential to maintaining

software quality and system reliability. Traditional repair processes often involve long

https://pinnaclepubs.com/index.php/EJACI

European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI

Vol. 1 No. 3 (2025) 95

cycles, high costs, and uncertainty regarding the impact of fixes on other system functions.
Optimizing this process requires establishing an automated, standardized, and intelligent
repair workflow [4].

Prioritization of vulnerabilities is a critical step. Automated security assessment tools
can classify vulnerabilities according to risk level, exploitability, and urgency, enabling
teams to focus their efforts on high-priority issues. Intelligent technologies can assist in
generating repair code suggestions, recommending remediation strategies, or proposing
standardized repair templates, reducing human error and improving consistency across
development teams.

Collaboration is also central to optimized repair processes. Automated task
assignment ensures that repair responsibilities are clearly distributed, while integration
with CI/CD pipelines allows for rapid verification and deployment of fixes. Real-time
monitoring and feedback mechanisms verify the effectiveness of repairs and detect any
regression or unintended side effects, ensuring the stability of the system [5,6].

Additionally, repair optimization benefits from continuous learning. Data from past
vulnerabilities, repair outcomes, and incident response metrics can be fed into machine
learning models to improve the predictive accuracy of risk assessment and remediation
guidance. This creates a self-improving repair ecosystem where both detection and
remediation processes are increasingly efficient, intelligent, and adaptive to evolving
security threats.

By implementing a fully optimized detection and repair framework, organizations
can achieve a robust, end-to-end approach to software security management. Such a
framework ensures that vulnerabilities are identified and resolved promptly, supports
rapid development cycles, and establishes a resilient foundation for secure software
operations in complex digital environments.

3. Network Security Vulnerability Detection and Repair Process Optimization
Technical Architecture Design
3.1. Overall Design and Objectives of the Technical Architecture

To enhance software security and improve operational efficiency, an improved
technical framework for network security vulnerability detection and repair has been
designed. The primary objective of this architecture is to accelerate the identification and
resolution of vulnerabilities, thereby mitigating the potential risks they pose to the system
[7].

The overall architecture consists of three main components: the vulnerability
detection module, the repair optimization module, and the whole-process integration
module. In the vulnerability detection module, automated scanning and artificial
intelligence techniques are employed to identify vulnerabilities quickly and accurately,
reducing reliance on manual inspection. The repair optimization module leverages
intelligent repair program generation and standardized repair processes to ensure that
remediation measures are both effective and reliable. Finally, the whole-process
integration module establishes a closed-loop security management system by tightly
integrating with development tools, enabling real-time monitoring, feedback, and
continuous improvement throughout the software lifecycle.

The core modules, their functional characteristics, and the corresponding
implementation objectives of this optimized technical architecture are summarized in
Table 1 below.

https://pinnaclepubs.com/index.php/EJACI

European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI

Vol. 1 No. 3 (2025) 96

Table 1. Overview of network security vulnerability detection and repair process optimization
technical architecture design.

Module name Function description
Technical

characteristics Achieve the goal

Vulnerability
detection
module

Identify vulnerabilities using
automated scanning and

artificial intelligence
analytics

Efficient and
accurate

vulnerability
scanning and

analysis

Quickly identify
potential

vulnerabilities and
reduce omissions

Repair
optimization

module

Optimize the vulnerability
repair process by

automatically generating
and validating fix patches

Intelligent patch
generation and

verification
mechanism

Ensure the
effectiveness and

reliability of repair
measures

Whole process
integration

module

Seamless integration with
the development tool chain

to achieve end-to-end
closed-loop security

management

Integrated
development and

safety management
system

Improved
vulnerability

handling

The primary goal of this architecture is to reduce the cycle time for detecting and
resolving security vulnerabilities while simultaneously improving the quality of
remediation. This ensures that the software development process remains both secure and
efficient, minimizing potential risks and supporting continuous, high-quality code
delivery.

3.2. Construction of the Technical Architecture of Vulnerability Detection Module
The vulnerability detection module serves a critical role within the network security

system, and its technical architecture must carefully balance response speed, detection
accuracy, and scalability. Built on a multi-level detection mechanism, the module
integrates static source code analysis, dynamic behavior monitoring, and rule-based risk
model construction to provide comprehensive oversight of potential security
vulnerabilities throughout all stages of the software development life cycle [8].

Leveraging a microservice architecture, each functional component operates
independently, while standardized interfaces facilitate smooth interaction between
modules. This design enhances the system's flexibility, maintainability, and adaptability
to evolving security requirements. Advanced artificial intelligence techniques,
particularly machine learning, are employed to analyze historical vulnerability data and
train a self-adjusting detection engine. This enables the module to efficiently detect new
and complex vulnerabilities that may not be captured by conventional methods [9].

In addition, the system incorporates efficient data acquisition and analysis tools,
ensuring the comprehensive collection and timely reporting of vulnerability information.
Real-time monitoring logs and data streams are aggregated and analyzed to provide
actionable insights, enabling rapid identification and prioritization of high-risk
vulnerabilities. Table 2 below illustrates the four-layer design logic of the technical
architecture for the vulnerability detection module, highlighting its modular, intelligent,
and data-driven structure.

Table 2. Overview of the four-layer design and functions of the technical architecture of the
vulnerability detection module.

hierarchy Core function Technical realization advantage
Data

acquisition
layer

Collect vulnerability
related data, such as static

code, run logs, etc

Static code analysis
tools, log collectors,

API calls

Provide a
comprehensive data

https://pinnaclepubs.com/index.php/EJACI

European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI

Vol. 1 No. 3 (2025) 97

source to ensure the
basis of testing

Detection
and analysis

layer

Vulnerability
identification, including
static analysis, dynamic
monitoring, and threat

modeling

Rule matching engine,
machine learning
model, behavior

monitoring module

Improve the accuracy
and coverage of

vulnerability
identification

Decision
response

layer

The detection results are
classified, prioritized and

responded to

Automatic hierarchical
algorithm, response

strategy engine

Ensure fast handling of
high-priority security

threats

Integrated
display layer

Display test results,
generate reports, and
support development
process optimization

Dashboards, report
generation tools,

integration with CI/CD
systems

Improve information
visualization and
decision-making

efficiency
The vulnerability detection module combines a multi-level technical architecture

with advanced detection techniques to achieve comprehensive collection and accurate
evaluation of vulnerability information. It further strengthens system security and
operational performance by providing rapid decision feedback and clear, actionable
intelligence.

3.3. Construction of Technical Architecture of Repair Process Optimization Module
The technical architecture of the repair process optimization module emphasizes

automation and intelligence to enhance both the efficiency and accuracy of vulnerability
remediation. Leveraging the security event analysis component, the module captures and
analyzes real-time data returned from the vulnerability detection module, classifies the
threat level of each vulnerability, and determines the appropriate processing sequence.
Integrated with a rule-based automatic patch generation tool and an AI-assisted code
repair recommendation system, the module formulates tailored repair strategies.
Subsequently, the test validation component evaluates the feasibility and system
compatibility of the proposed repair strategies, mitigating the risk of introducing new
vulnerabilities during the remediation process. Finally, the repair deployment scheduler
pushes the validated patches to the relevant systems and monitors their effectiveness,
creating a closed-loop feedback mechanism that supports dynamic optimization. Figure 1
below illustrates the complete technical architecture of the repair process optimization
module [10].

https://pinnaclepubs.com/index.php/EJACI

European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI

Vol. 1 No. 3 (2025) 98

Figure 1. Organizational structure of repair process optimization module.

The entire module architecture is deployed using a microservice approach to ensure
high scalability and stability, enabling efficient operation in large-scale distributed
environments.

3.4. Security and Scalability of Technical Architecture
The security and scalability of the technical architecture are critical for optimizing the

network security vulnerability detection and repair process. To achieve robust security,
the design employs a layered defense strategy, providing comprehensive protection
across the network, application, and data levels. Unauthorized access is strictly controlled,
and user authentication mechanisms are strengthened to ensure secure internal system
communications. Additionally, the architecture integrates a real-time threat detection and
response system that leverages machine learning to dynamically analyze data traffic and
logs, enabling rapid identification and mitigation of potential risks.

To enhance scalability, the system adopts a microservice architecture, modularizing
the detection and repair functions. Each service can be deployed and scaled
independently, allowing resources to be adjusted according to workload.
Containerization technologies, such as Docker, combined with automated orchestration
tools like Kubernetes, enable rapid cross-platform deployment and streamlined
application management. The architecture also supports seamless integration with multi-
cloud platforms, effectively eliminating single points of failure and improving system
reliability and adaptability [11].

This design not only ensures robust security but also delivers high scalability,
allowing the system to respond efficiently to evolving security challenges and dynamic
software development environments. It establishes a solid technical foundation for
sustainable enterprise operations while facilitating continuous improvement in
vulnerability detection and repair capabilities.

https://pinnaclepubs.com/index.php/EJACI

European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI

Vol. 1 No. 3 (2025) 99

4. Application of Optimization of Security Vulnerability Detection and Repair
Process in Software Development
4.1. Application of Multi-Tool Collaboration in Development

In modern software development, strengthening the optimization of security
vulnerability detection and repair processes is essential to ensure software quality and
protect user information. Multi-tool collaboration plays a critical role in achieving this
goal. Traditional single-tool approaches are often insufficient, as they cannot
comprehensively identify all potential risks. By integrating multiple tools-such as static
code analysis tools (e.g., SonarQube), dynamic vulnerability scanning tools (e.g., OWASP
ZAP), and dependency library security monitoring tools (e.g., Snyk)-a comprehensive,
multi-dimensional vulnerability detection network can be established.

This collaborative tool ecosystem can be seamlessly incorporated into continuous
integration/continuous deployment (CI/CD) pipelines throughout the software
development lifecycle. Static analysis tools are automatically triggered at code submission
to detect coding errors and potential security risks. During deployment, dynamic analysis
tools simulate attack scenarios and uncover runtime vulnerabilities, while dependency
monitoring tools detect security issues within third-party libraries and components. The
integration of these tools enhances the comprehensiveness of vulnerability detection and
reduces false positives through shared information and cross-validation among tools.

During the vulnerability repair phase, multi-tool collaboration remains equally
important. By combining a vulnerability management platform with development
management tools (e.g., JIRA), teams can rapidly identify, assign, and track repair tasks.
Automated patch generation and AI-assisted repair suggestions further accelerate the
remediation process, significantly reducing the time required to resolve high-priority
vulnerabilities [5].

Overall, multi-tool collaboration not only improves the breadth and depth of
vulnerability detection but also shortens repair cycles, enhances team efficiency, and
strengthens coordination across development and security teams. It has become a core
strategy for optimizing the security processes in modern software development, ensuring
both resilience and efficiency throughout the software lifecycle.

4.2. Application of Automated Repair Technology
In the software development process, automated repair technology can rapidly

identify and address security risks through intelligent operations and efficient workflows.
This approach significantly improves the efficiency of vulnerability remediation while
reducing the likelihood of security breaches during development. The core steps of this
technology include vulnerability identification, automatic patch generation, and
validation of patch effectiveness.

Based on the results of vulnerability scanning, an automated repair strategy is
formulated according to the specific characteristics and severity of each vulnerability. The
system then selects the optimal repair solution and applies the corresponding patch. This
process ensures that high-risk vulnerabilities are prioritized and addressed promptly,
while minimizing disruption to system functionality. The optimal selection of repair
strategy can be represented through a formulaic approach that considers factors such as
risk level, repair cost, and expected impact on system performance, enabling the most
efficient and effective remediation decisions [6].

𝑠𝑠∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠∈𝑆𝑆

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑠𝑠,𝐷𝐷) (1)
Among them, Effectiveness(𝑠𝑠,𝐷𝐷)Indicates the effect of the repair policy on a specific

vulnerability. Patches generate repaired code based on program context analysis and
predefined templates𝐶𝐶′The functional correctness and security verification conditions
after vulnerability repair must be met. Functional correctness verification formula:

∀𝑥𝑥 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐶𝐶′, 𝑥𝑥) = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑥𝑥) (2)

https://pinnaclepubs.com/index.php/EJACI

European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI

Vol. 1 No. 3 (2025) 100

Among them, TestCases For a collection of test cases, ExecIndicates the execution
result of the code. Technologies such as deep learning continue to develop, and repair
algorithms based on a large amount of data continue to evolve, which can update repair
schemes in real time according to past vulnerability repair cases, thus greatly improving
the wisdom of the automatic repair system and providing strong support for the security
of the programming process.

4.3. Application of Intelligent Detection Technology
In software development, intelligent detection technology relies on deep learning

and natural language processing (NLP) technology, which significantly improves the
efficiency of detecting and fixing security vulnerabilities. This kind of technology can
automatically screen out key features in a large number of code, and through model
training to predict new vulnerabilities, providing powerful technical support for
developers. In the intelligent detection process, code semantic analysis is the core link. By
converting code into vector data and feeding it into a deep learning model, the system can
automatically detect potential vulnerabilities. Let the semantic vector of the code snippet
be C = [c1, c2,⋯ , cn] , intelligent detection model by building a scoring
functionS(C, W)To evaluate the security of the code, whichWIs the model parameter.
Code scoring function formula:

𝑆𝑆(𝐶𝐶,𝑊𝑊) = ∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1 ⋅ 𝑐𝑐𝑖𝑖 (3)

If score S(C, W)Less than the safety threshold, is flagged as potentially vulnerable
code. Intelligent detection technology is also widely used in dynamic behavior analysis to
capture abnormal behavior by simulating the runtime environment. Set the sequence of
logs generated when a piece of code is run L = [𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑚𝑚]. Abnormal score formula:

𝐸𝐸(𝐿𝐿) = 1
𝑚𝑚
∑ (𝑙𝑙𝑖𝑖 − 𝜇𝜇)𝑚𝑚
𝑖𝑖=1

2 (4)
Among them,μ Indicates the average value of normal behavior logs. If abnormal

score E(L) If the threshold is exceeded, the system triggers a security alarm. Advanced
technical intelligence not only realizes vulnerability detection, but also optimizes and
upgrades the patching process. With continuous learning, models can be adjusted in real
time to address emerging vulnerabilities.

4.4. Optimization of Cross-Team Collaboration and Security Mechanism
In traditional software development, information exchange between developers and

security personnel is often inefficient, which can delay the detection and remediation of
security vulnerabilities and, in some cases, exacerbate security risks. To address this
challenge, optimizing cross-team collaboration mechanisms and strengthening security
protocols are critical measures. Integrating security considerations throughout every
stage of software development enhances the capacity for early detection and rapid
resolution of vulnerabilities.

The adoption of DevSecOps practices facilitates close collaboration between
development and security teams from the outset of a project. By leveraging advanced
techniques such as static code analysis and dynamic testing tools, teams can accurately
identify and mitigate potential security risks. Automated testing systems further
streamline the detection process and reduce the need for manual intervention, thereby
improving both the speed and accuracy of vulnerability identification [8].

Effective teamwork is also reinforced through efficient communication tools and
collaborative platforms, which enhance information transparency and enable immediate
feedback. Real-time communication allows developers to quickly receive guidance from
security specialists and adjust development activities accordingly. Additionally, the
implementation of a vulnerability management system provides full visibility into the
repair process, ensuring both the completeness and manageability of remediation efforts.

https://pinnaclepubs.com/index.php/EJACI

European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI

Vol. 1 No. 3 (2025) 101

From a security mechanism perspective, establishing a repair prioritization strategy
based on the criticality and potential impact of vulnerabilities promotes the rational
allocation of resources and accelerates the overall repair process. By combining optimized
collaboration and structured security mechanisms, software teams can achieve higher
reliability, reduced risk, and more efficient resolution of security vulnerabilities.

5. Conclusion
The optimization of the software vulnerability detection and repair process not only

enhances development speed and software quality but also mitigates security risks,
ensuring the stability and protection of products in dynamic network environments. To
achieve this, a series of practical optimization strategies have been proposed, along with
a technical framework aligned with current software development trends.

In practical applications, the integration of multi-tool collaboration, automated repair
mechanisms, and intelligent detection technologies significantly improves the timeliness
and accuracy of vulnerability detection and remediation. These approaches enhance
cross-team collaboration, strengthen communication efficiency between development and
security teams, and provide a robust foundation for the security maintenance of the entire
software life cycle.

As technology continues to evolve and these solutions are widely adopted, software
security development is poised to enter a more efficient and intelligent era. This
framework not only addresses present security challenges but also establishes a scalable
and adaptable system capable of responding to future developments, laying the
groundwork for sustainable, high-quality, and secure software solutions.

References
1. H. Shim, J. Back, Y. Eun, G. Park, and J. Kim, "Zero-dynamics attack, variations, and countermeasures," In Security and Resilience

of Control Systems: Theory and Applications, 2022, pp. 31-61. doi: 10.1007/978-3-030-83236-0_2
2. G. Chen, H. Wang, and C. Zhang, "Mobile cellular network security vulnerability detection using machine learning,"

International Journal of Information and Communication Technology, vol. 22, no. 3, pp. 327-341, 2023.
3. N. Hussein, and A. Nhlabatsi, "Living in the dark: Mqtt-based exploitation of iot security vulnerabilities in zigbee networks for

smart lighting control," IoT, vol. 3, no. 4, pp. 450-472, 2022. doi: 10.3390/iot3040024
4. R. Caviglia, "Novel Approaches to Standard Based Cybersecurity Risk Management in OT Environment," 2025.
5. A. Odlyzko, "Cybersecurity is not very important," Ubiquity, vol. 2019, no. June, pp. 1-23, 2019. doi: 10.1145/3333611
6. N. Ziems, and S. Wu, "Security vulnerability detection using deep learning natural language processing," In IEEE INFOCOM

2021-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), May, 2021, pp. 1-6. doi:
10.1109/infocomwkshps51825.2021.9484500

7. X. Yang, and M. S. Mannan, "The development and application of dynamic operational risk assessment in oil/gas and chemical
process industry," Reliability Engineering & System Safety, vol. 95, no. 7, pp. 806-815, 2010.

8. J. Roldán-Gómez, J. Carrillo-Mondéjar, J. M. Castelo Gómez, and S. Ruiz-Villafranca, "Security Analysis of the MQTT-SN
Protocol for the Internet of Things," Applied Sciences, vol. 12, no. 21, p. 10991, 2022. doi: 10.3390/app122110991

9. J. Wetzels, D. Dos Santos, and M. Ghafari, "Insecure by design in the backbone of critical infrastructure," In Proceedings of Cyber-
Physical Systems and Internet of Things Week 2023, 2023, pp. 7-12. doi: 10.1145/3576914.3587485

10. S. Kumar, and H. Vardhan, "Cyber security of OT networks: A tutorial and overview," arXiv preprint arXiv:2502.14017, 2025.
11. M. Rodda, and V. Mavroudis, "Analysis of Publicly Accessible Operational Technology and Associated Risks," arXiv preprint

arXiv:2508.02375, 2025.

Disclaimer/Publisher’s Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s)
and contributor(s) and do not necessarily reflect the views of PAP and/or the editor(s). PAP and/or the editor(s) disclaim any
responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products
mentioned in the content.

https://pinnaclepubs.com/index.php/EJACI

	1. Introduction
	2. Optimization Method of Network Security Vulnerability Detection and Repair Process
	2.1. Optimization Process of Vulnerability Detection
	2.2. Optimization Process of Vulnerability Repair

	3. Network Security Vulnerability Detection and Repair Process Optimization Technical Architecture Design
	3.1. Overall Design and Objectives of the Technical Architecture
	3.2. Construction of the Technical Architecture of Vulnerability Detection Module
	3.3. Construction of Technical Architecture of Repair Process Optimization Module
	3.4. Security and Scalability of Technical Architecture

	4. Application of Optimization of Security Vulnerability Detection and Repair Process in Software Development
	4.1. Application of Multi-Tool Collaboration in Development
	4.2. Application of Automated Repair Technology
	4.3. Application of Intelligent Detection Technology
	4.4. Optimization of Cross-Team Collaboration and Security Mechanism

	5. Conclusion
	References

