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Abstract: It has shown broad development prospects in intelligent application fields such as cross-
lingual voice interaction, machine translation, and voice assistants. Faced with challenges such as
complex speech features, diverse semantic structures, and limited terminal deployment, technical
systems need to achieve effective collaboration between recognition accuracy, semantic consistency,
and operational efficiency. The application of training language models, context-aware mechanisms,
and end-cloud collaborative structures provides a new path for optimizing system performance.
This article focuses on key aspects such as speech recognition, semantic understanding, and deploy-
ment mechanisms, exploring technical bottlenecks and feasible improvement solutions in multilin-
gual environments, with the aim of providing a theoretical basis and practical guidance for cross-
language applications of intelligent speech systems.
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1. Introduction

With the advancement of artificial intelligence technology, deep integration of natu-
ral language processing and speech interaction systems has been achieved, gradually
leading to intelligent and efficient human-machine communication in multilingual sce-
narios. In a multilingual environment, the integrated improvement of language recogni-
tion, semantic understanding, and speech synthesis has become a key research and prac-
tical direction. Multilingual speech recognition systems face problems such as complex
speech features, complex semantics, and complex working environments. This has led to
significant shortcomings in accuracy, real-time performance, and adaptability of tradi-
tional technologies. In addition, the introduction of pre-trained language models, end
cloud collaborative computing, and context-aware mechanisms further promotes the con-
tinuous optimization of system performance, providing new solutions and system archi-
tectures to address the aforementioned issues. This article mainly analyzes various Al-
based speech natural language processing methods and intelligent speech interaction sys-
tems, introduces the main core system architecture, analyzes current performance issues,
and proposes targeted solutions, in order to provide theoretical support and technical ref-
erence for the practical application of multilingual intelligent speech systems.

2. Overview of Natural Language Processing Technology

Natural Language Processing (NLP) is a fusion technology in the fields of linguistics,
computer science, artificial intelligence, etc. Its core goal is to achieve machine under-
standing, generation, and processing of language. NLP has emerged in the context of the
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surge in massive data and the increasing demand for human interaction, and has become
the foundation for achieving human-computer dialogue, semantic understanding, and
text generation. Traditional NLP utilizes rule-based methods to process natural language,
mainly relying on manually constructed vocabulary and grammar rules to parse natural
language. Later, with the improvement of data scale and computing power, statistical
learning and deep neural networks have become the key driving forces in current devel-
opment.

In recent years, with the widespread application of pre-trained language models such
as BERT, GPT, and T5, NLP research has gradually delved into the semantic layer, no
longer staying at the syntactic level. By learning from massive unlabeled corpora, these
models demonstrate excellent contextual modeling, cross-language inference, and trans-
fer learning capabilities, achieving outstanding performance in tasks such as text classifi-
cation, question answering, and machine translation. At the same time, the research on
multilingual NLP has further expanded its breadth. The system needs to have the ability
to understand multilingual grammar rules, vocabulary systems, and cultural back-
grounds, and achieve semantic consistency between different languages. For the interac-
tion scenarios of speech, NLP is constantly closely integrated with technologies such as
speech recognition and speech synthesis. Speech systems are gradually moving from com-
mand-based interaction to natural language dialogue mode, with broad application pro-
spects and the possibility of continuous development.

Moreover, the integration of NLP with knowledge graphs, reinforcement learning,
and multimodal processing (such as combining text, audio, and visual information) has
opened new avenues for building more intelligent and context-aware systems. Emerging
research emphasizes low-resource and zero-shot learning approaches, enabling models to
generalize across languages and domains with minimal annotated data. In addition, ethi-
cal considerations, including fairness, transparency, and bias mitigation, are becoming
crucial in NLP system design, especially for multilingual applications where cultural and
linguistic diversity must be carefully handled. These trends indicate that NLP is evolving
not only as a tool for understanding language but also as a strategic foundation for global,
intelligent, and human-centered Al systems.

3. Application of Natural Language Processing Technology and Intelligent Speech
Interaction

3.1. The Use of Multi-Speech Recognition Technology in Industry Systems

Multilingual recognition systems are commonly used in applications that require
high-frequency interaction, such as cross-border customer service, medical intelligent
consulting, and financial inquiries [1]. By extracting frequency features and recognizing
language patterns in speech signals, the analysis system achieves accurate recognition and
response of multiple language pattern commands. In general, end-to-end architecture im-
proves the effectiveness and semantic matching accuracy of multilingual recognition
models by directly associating sound signals with text semantics. The recognition process
can be formalized as an optimal path search problem:

@ = arg 3 logP(Y]x) 1)

Among them, x For the speech input sequence,Y For candidate transcription, Y
For all possible sets of output sequences. This formula represents finding the transcription
path with the highest probability among all possible texts. With the integration of neural
networks and multilingual models, multi-speech recognition is continuously applied in
general scenarios and industry customization, helping to build smarter and more accurate
speech interaction platforms.
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3.2. The Application of Semantic Understanding Technology in Intelligent Interaction

For intelligent voice communication systems, semantic understanding is the core part,
including the recognition of user needs, the construction of a language environment, and
the formulation of response methods for the other party. In recent years, using deep learn-
ing to solve semantic analysis problems has been widely applied in application fields such
as question answering systems, voice assistants, translation systems, etc. This method
mainly relies on semantic filling and attention to complete the summary and description
of text content. To improve the context recognition ability of the system, a commonly used
method is to use the cross-entropy loss function as the optimization objective:

n
L@ =- 3 Yilog(y) @

i=1
A
Among them, Y, For authentic labels, i For the predicted probability output by

the model, 8 For trainable parameters. This function can directly control the difference
between the predicted results and the actual labels, thereby improving the model's cogni-
tive ability to input information. Intelligent interactive systems are constantly evolving
and upgrading in semantic cognition, which helps to enhance the system's generalization

ability and semantic analysis depth.

3.3. Expansion of Multilingual Processing Models in Intelligent Terminals

The terminal deployment capability of multilingual processing models determines
whether intelligent speech systems can operate efficiently in practical scenarios. In order
to meet the multilingual environment and make full use of limited terminal resources, the
existing mainstream methods usually use model compression technology, edge compu-
ting deployment, and knowledge extraction mechanisms to improve the performance of
multilingual models in real-time reasoning and recognition accuracy. In the inference pro-
cess at the terminal, it is usually approached from the perspective of minimizing the dif-
ference between the prediction loss and the reference output. The mean square error (MSE)
loss function can be expressed as:

n
L= % W-q) ®)

i=1
A
Among them, Y, For real output, Y To predict the results of the model, n For the
i

sample size. The above functions have been widely used in scenarios such as speech scor-
ing and text generation quality evaluation, which help the model achieve precise control
and effective tuning in the final on-screen application. The future optimization directions
mainly include lightweight models, multilingual support, multimodal fusion, etc.

4. The problems faced by Al-based multilingual natural language processing technol-
ogy and intelligent speech interaction systems

4.1. The Accuracy of Speech Recognition Fluctuates

In practical applications, multilingual speech recognition systems are often plagued
by significant accuracy fluctuations. There are great differences in speech characteristics
of different languages, such as speech speed, pronunciation mode, phoneme structure,
and other factors, which make it difficult for a single model to maintain a stable and good
recognition accuracy in all languages for a long time. Small languages or rare languages
are more prone to word misidentification or sentence segmentation [2]. The differences in
local languages can also cause more difficult recognition problems, and even lead to con-
fusion and omissions in recognition in environments with strong regional characteristics.
In addition, environmental noise can also have a significant impact on accuracy, causing
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a decrease in speech signal quality in noisy environments such as public places and trans-
portation, significantly reducing the system's response stability [3]. Moreover, natural lan-
guage features such as voice interruption and rapid speech can also affect the system's
continuous recognition ability, resulting in the overall semantic output being unstable and
limiting the application and scope of human-computer interaction systems [4].

4.2. Unclear Semantic Analysis Logic Chain

In the process of multilingual semantic parsing, semantic jumps and contextual inco-
herence often occur, especially in the face of multiple rounds of dialogue, casual state-
ments, and informal word inputs, which are more prominent. The diversity of expression
forms caused by different language structures makes it difficult to form a unified language
model and semantic mapping relationship, resulting in unstable semantic accuracy. When
the system needs to perform tasks such as cross-sentence reasoning, implicit semantic ex-
pression, and contextual reference, it is difficult to flexibly use logical coherence tech-
niques, which can easily lead to failure in intent recognition or the generation of products
that do not meet the user's semantic needs. Regarding long sentences and colloquial ex-
pressions, semantic models have limited effectiveness in extracting key semantics, result-
ing in the defect of missing semantic information. In addition, the annotation data that
semantic understanding relies on has the problem of uneven distribution, which reduces
the applicability of the system in large-scale scenarios and its adaptability to real-world
scenarios [5].

4.3. System Deployment Has Limited Operational Efficiency

Due to the characteristics of large model size and massive parameters, multilingual
language models find it difficult to achieve real-time operation and efficient inference on
low-power devices. The system platforms in different terminal environments (such as op-
erating systems, protocol interfaces, and storage architectures) lead to new challenges,
such as model adaptability and communication protocols. In the embedded system or
edge computing environment, it is easy to affect the stability of the system operation if the
model reasoning speed is fast and the memory overhead is low. In addition, to achieve
multilingual support, models need to have the ability to be reused across languages. How-
ever, most models do not yet have reasonable compression methods and dynamic switch-
ing mechanisms to meet this requirement, which restricts the implementation and sus-
tainable development of voice-based intelligent systems in various terminals and multiple
scenarios (Figure 1).

Insufficient stability of speech recognition
models

Identification output of environmental noise
interference

Limited coverage of language corpus Dialect changes affect recognition accuracy

The semantic understanding logic chain is
incomplete

There is a deviation in multilingual semantic
mapping

Context preservation ability is easily lost Fuzzy language processing has low accuracy

System deployment adaptation capability is
limited

Large models are difficult to run on
lightweight terminals

Lack of unified standards for cross platform
interfaces

Reasoning efficiency is difficult to meet real-
time requirements

Figure 1. Problems with an Al-based multilingual voice interaction system.
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5. Optimization Strategies for AI-Based Multilingual Natural Language Processing
Technology and Intelligent Speech Interaction Systems
5.1. Enhancing the Adaptability of Speech Recognition Models

In order to make the interactive system have robust environmental adaptability and
achieve precise interaction, achieving multilingual interaction requires data expansion,
structural optimization, and enhanced contextual awareness. The specific implementation
path and its effects are shown in the Table 1 below:

Table 1. Optimization Strategy and Effect Data of Multilingual Speech Recognition Model.

e Improved recogni- Enhanced system Reduced average
optimization measures

tion accuracy adaptability response time
Multi-language corpus en- 116.8% +18.5% 12.3%
hancement training
Collabc.)rative modeling of +13.4% +15.1% -10.8%
dialect features

End-to-end lightweight

nd-to-end lightweig +10.7% +12.6% 119.2%
compression structure

Add contextual semantic +14.99% +17.4% 11.5%

awareness

By enhancing the functionality through multiple language materials, the model's
ability to recognize unconventional languages and sound types has been greatly im-
proved, with a recognition accuracy increase of 16.8%, an applicable scenario increase of
18.5%, and a system response time decrease of 12.3%. The collaborative modeling strategy
incorporates local dialect features into the acoustic modeling process, making the speech
recognition environment closer to the real natural environment, resulting in a 13.4% in-
crease in recognition accuracy. The end-to-end structure optimization adopts parameter
compression and model pruning methods, which not only improve the model calculation
speed but also enhance device compatibility and system response time by nearly 19.2%.
After adding the voice background understanding function, the model can flexibly track
the meaning involved in multiple rounds of conversations, and thus its recognition accu-
racy is 14.9%. Multiple system improvement schemes will provide long-term support and
benefit guarantees for speech recognition of various languages in complex scenarios.

5.2. Building a Semantic Understanding, Reasoning, and Expression System

In multilingual intelligent interaction systems, building a stable and efficient seman-
tic understanding and reasoning system can improve the parsing ability of complex in-
structions, different language expressions, and overlapping expressions. Introducing a
multi-semantic commonality pattern to enhance the matching of languages in the seman-
tic vector space, facilitating the system to maintain semantic consistency in cross-lingual
conversion. The enhanced memory strategy can help the system accurately capture hid-
den intentions and implicit contextual changes in the dialogue process of contextual co-
herence, ensuring the continuous stability of the system's coherent linking of multiple
rounds of semantics. Building a scalable semantic network structure can be used to char-
acterize the semantic relationships between entities and deepen the system's information
foundation for complex language structures. The expression unit of situational perception
can enhance the system's grasp of characteristics such as emotional color, discourse pref-
erence, and contextual suggestion.

From the Table 2, it can be seen that the system parsing accuracy under cross-lan-
guage semantic sharing is 15.9%, which is more stable in multi-statement conversion. The
upgrading of context memory technology has improved the sustainability of conversa-
tions, with a sustainability rate of 19.1% for multiple rounds of conversations; The use of
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semantic graph structure enhances the information connections between various seman-
tics, improves the system's reasoning ability to solve comprehensive problems, and in-
creases the correct answer discovery rate to 16.7%; Expressing elements through scenarios
helps the system better understand ambiguous and semantically unclear problems, and
can further enhance the consistency and fluency of multi round conversations. The up-
grade of all technologies has achieved the transformation of semantic analysis from local
single recognition to a comprehensive understanding of the whole.

Table 2. Optimization Results of Semantic Understanding, Reasoning, and Expression System.

Multi-round conversa-

optimization strate Improve understanding accurac i .
P 8y P 8 y tion retention rate

Introducing a Cross-Lan-

guage Semantic Sharing +15.9% +17.4%
Model
Enhance the conte>.<tual +14.39% +19.1%
memory mechanism
Bulld.mg a dynamic se- +16.7% +18.6%
mantic graph structure
Integrating situational
perception expression +13.8% +15.2%

units

5.3. Optimize System Deployment and Operation Collaboration Mechanism

In order to improve the efficiency and robustness of the deployment and operation
of multilingual intelligent speech systems, joint optimization strategies can be adopted on
multiple platforms and devices, such as simplifying the model structure, standardizing
interface specifications, and implementing dynamic management schemes for operation.
The use of simplified model schemes can significantly reduce the parameters and compu-
tational complexity of the model, and improve its applicability to embedded and mobile
devices. By building standard cross-device interface protocol specifications, module mi-
gration and integration can be quickly completed between devices of various platforms
and architectures, enhancing the flexibility of module deployment. Adopting an end-to-
end collaboration model, the terminal is responsible for simple recognition tasks, while
the cloud is responsible for complex semantic understanding, which can balance local
computing load and response time delay to a certain extent. Introducing a fault-tolerant
hot start mechanism helps to ensure automatic recovery and continuous operation of
modules during system interrupts or asynchronous requests.

From the Table 3, it can be seen that relying on model pruning can improve deploy-
ment efficiency by 22.6% and deployment utilization by 21.7%, especially at the edge end
where the improvement is most significant; Adopting a consistent interface protocol can
improve module migration efficiency by about 20% and reduce research and operation
costs; End to end collaboration, considering both computing power and latency manage-
ment, can improve deployment efficiency by 24.1% and increase deployment utilization
by 23.8%; Fault tolerant hot start further enhances the reliability and continuity of the sys-
tem, allowing for quick recovery in case of disconnection or abnormalities, ensuring the
continuous operation of the system.

Vol. 1 No. 3 (2025)

52


https://pinnaclepubs.com/index.php/EJACI

European Journal of Al, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI

Table 3. Effectiveness of System Deployment and Collaboration Mechanism Optimization Strate-
gies.

.. Increase in deploy- Resource utilization rate
Deployment optimization strategy

ment efficiency improvement ratio
Implement. lightweight model prun- 122.6% 21.7%
ing technology
Building a unified cross-end interface +19.49% 17.5%
protocol
Adopt'ing an enc.l—to—clogd collabora- 241% 123.8%
tive operation architecture
Introducing a fault-tolerant hot start +18.3% 120.2%

scheduling mechanism

6. Conclusion

By combining multilingual NLP with speech Al interaction technology, language in-
telligence is not limited to shallow recognition functions, but is developing towards deep-
level cognition and diversified interaction. However, in the face of differences in language
structure and the diversity and complexity of semantics, how to achieve deep semantic
understanding while ensuring speech recognition accuracy and maintaining overall sys-
tem performance remains a key challenge and has become a current focus. With the con-
tinuous optimization of deep learning models and the evolution of edge-centric compu-
ting, multilingual speech systems have also transitioned from basic functions to specific
functional scenarios. Research has shown that optimizing the adaptability of recognition
models, establishing reliable semantic reasoning models, and regulating deployment
strategies can effectively improve the operation and interaction quality of systems under
multiple terminal and environmental conditions. The design of future multilingual artifi-
cial intelligence will focus on building efficient system architectures with high semantic
consistency, strong cross-language transfer capabilities, and low computational resource
consumption. And committed to building multilingual Al systems with lower computing
power consumption, laying a solid foundation for cross-cultural intelligent communica-

tion.
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