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Abstract: In the blowout development of mobile payment and Internet financial payment systems, 
highly concurrent payment systems face dual challenges of data consistency assurance and system 
performance expansion. To address these issues, design strategies including hierarchical con-
sistency control, data distribution optimization, and consistency scalability collaborative regulation 
are proposed to achieve a system architecture that balances transaction accuracy and throughput. 
The analysis of three typical cases-aggregated payment, high-speed sales system, and financial re-
mittance channel-demonstrates that this strategy can be applied to complex operation scenarios, 
enhancing efficiency and providing a theoretical foundation and practical guidelines for future de-
velopment of high-reliability payment systems. 
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1. Introduction 
With the rapid development of mobile payments, e-commerce, and financial digiti-

zation, payment systems are facing huge concurrent processing demands. However, in a 
distributed architecture environment, there is a natural tension between data consistency 
and system scalability: strong consistency may lead to performance degradation, and ex-
cessive pursuit of performance may cause transaction confusion and data conflicts. The 
main challenge is how to ensure the security and consistency of transactions while also 
having flexibility, scalability, and high response speed. This article combines the charac-
teristics of the system to provide multi-level consistency and scalability solutions. 
Through examples in important scenarios, it provides theoretical support for the architec-
ture optimization and design application of highly reliable payment systems. 

2. Operational Characteristics of High-Concurrency Payment Systems 
2.1. Distributed Evolution Characteristics of System Architecture 

As the concurrent pressure of payment business continues to rise, traditional struc-
tures cannot meet the requirements of system stability, scalability, throughput, and other 
aspects [1]. The old-fashioned payment system integrates core functions such as transac-
tion execution, accounting, and risk control verification into different programs, and con-
ducts all business operations through a single database and access portal. Although this 
mode is easy to deploy, it can create efficiency bottlenecks under heavy load conditions: 
tightly coupled modules and single-point components are prone to failure and cannot 
scale horizontally, becoming the main bottleneck of system reliability. 
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To improve the system's resilience and ability to handle parallel loads, payment sys-
tems have evolved into a decentralized collection of microservices. The main functions 
are divided into independent microservice components deployed to node clusters, and 
these nodes are managed uniformly. Asynchronous and message-driven concurrent col-
laboration modes are adopted between services, and Kafka is used for state migration and 
serial decoupling. For data storage, a sharding approach is adopted to improve read and 
write efficiency and scalability. This architecture pattern supports fault isolation, dis-
patching, scheduling, and other functions, thereby strengthening scalability and data con-
sistency in later stages. 

As shown in Figure 1, the typical architecture of a high-concurrency payment system 
consists of a user access layer, a service gateway layer, a core service layer, a cache layer, 
and a data persistence layer. This architecture achieves mutual decoupling based on ser-
vice routing, which also provides a foundation for subsequent data consistency and per-
formance scalability. 

 
Figure 1. Typical distributed architecture flowchart of a high-concurrency payment system. 

2.2. Consistency and Performance Conflict in Data Processing 
In high-concurrency payment systems, there is a natural contradiction between sys-

tem efficiency and data consistency [2]. On the one hand, payment requires a strong trans-
actional nature, which means ensuring that data such as order status, account balance, 
and ledger records remain accurate during the transaction process to avoid data errors; 
On the other hand, to meet the high concurrency requirements, it is necessary to provide 
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higher throughput and lower latency response. However, as the system transitions from 
centralized to distributed design, this contradiction becomes increasingly prominent. 

In centralized mode, consistency can be ensured through local transactions, with 
short execution paths and minimal performance damage. However, when dealing with 
multiple databases in a distributed environment, cross-node work is required to ensure 
data consistency, which can lead to a series of problems such as network latency and link 
instability. Therefore, different data consistency control schemes were adopted in the ac-
tual development process, such as 2PC, TCC, SAGA, message trading, etc. These mecha-
nisms can achieve data consistency in different scenarios, but also introduce new trade-
offs among system performance, availability, and development complexity. 

To clearly demonstrate the technical characteristics and applicable boundaries of dif-
ferent consistency mechanisms, Table 1 compares and summarizes commonly used 
schemes: 

Table 1. Comparison of Characteristics of Common Consistency Control Mechanisms. 

Consistency 
mechanism 

Conform-
ance Levels 

perfor-
mance im-

pact 
Applicable scenarios 

Overview of advantages 
and disadvantages 

Local transac-
tion (single 

node) 

Strong con-
sistency 

High per-
formance 

Single system, small-
scale transactions 

Simple implementation, 
poor scalability 

Two-stage sub-
mission (2PC) 

Strong con-
sistency 

Low per-
formance 

Core accounting and 
balance processing 

Reliable data, severe 
blockage, high failure rate 

TCC model 
Controllable 
consistency 

Medium 
perfor-
mance 

Compensatable busi-
ness, pre-authorized 

transactions 

High idempotency re-
quirements and strong 
business invasiveness 

SAGA model 
eventual 

consistency 
High per-
formance 

Long transaction 
chain, order pro-

cessing 

Support concurrency and 
compensate for complex 

logic 

Message trans-
action 

eventual 
consistency 

High per-
formance 

Asynchronous notifi-
cations, non-core 

writes 

Consistent latency, de-
pendent on message relia-

bility 
In high-concurrency environments, it is impossible to guarantee that the system will 

always run in a stable state. If secondary links can accept temporary inconsistencies, syn-
chronization separation and final consistency should be the main approach to reduce the 
interference of consistency control on system performance. 

3. Design Strategies for Data Consistency and Performance Scalability 
3.1. Construction Plan for Hierarchical Consistency Guarantee Mechanism 

To achieve a collaborative balance between data consistency and system performance 
in high concurrency scenarios, a consistency cost function can be introduced to quantita-
tively analyze the consistency strategies of different modules: 

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ (𝑤𝑤𝑖𝑖 ⋅ 𝐷𝐷𝑖𝑖 + 𝜆𝜆𝑖𝑖 ⋅ 𝐿𝐿𝑖𝑖)𝑛𝑛
𝑖𝑖=1           (1) 

Among them, 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represents the overall consistency control cost, 𝐷𝐷𝑖𝑖  is the perfor-
mance loss caused by the consistency strategy in the 𝑖𝑖 module, 𝐿𝐿𝑖𝑖 is the data synchroni-
zation delay of this module, and 𝑤𝑤𝑖𝑖 , 𝜆𝜆𝑖𝑖 respectively represent the weight factors of per-
formance sensitivity and delay tolerance of this module. By dynamically adjusting param-
eter combinations, a flexible configuration of consistency levels can be achieved under 
different business conditions. 
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At the beginning of developing this mechanism, each function was divided into three 
categories based on consistency requirements, such as account balance and payment con-
firmation modules [3]. A strong consistency strategy was used to ensure their correctness, 
and 2PC or Raft consensus protocols were used to ensure that multiple copies were writ-
ten simultaneously, ensuring the consistency and immutability of transaction results; For 
modules with temporary inconsistency tolerance, a serializable consistency method is 
adopted, using MVCC and optimistic locks to achieve concurrent writing, reducing the 
blocking risk caused by synchronization while ensuring the correctness of business pro-
cesses; The auxiliary flow functions such as logging and user behavior analysis are con-
figured as the final consistency strategy, using asynchronous message queues to transmit 
data. By combining delayed write-backs, batch writes, scheduled scans, and other meth-
ods, the system's throughput is improved while ensuring the data availability within the 
consistency circle [4]. 

To enhance the reliability of institutional operation, pre-registration and idempotent 
identification control have been introduced to eliminate duplicate entries and chaotic 
states. Each action will be tracked with a unique ID to reduce redundant behavior and 
enable a general repair process. For unfinished work, it will be automatically retried, 
rolled back to the initial state, or manually intervened to ensure the recoverability and 
integrity of the entire process. 

The above mechanism can improve the system's support for business consistency 
processing under overload conditions, enabling the system to have transaction reliability 
and elastic scalability balance, effectively supporting the elastic scheduling and high avail-
ability of the payment system. 

3.2. Data Distribution Design for Concurrent Performance Improvement 
The quality of the data distribution strategy determines the maximum concurrent 

quantity in concurrent payment systems. Therefore, based on the probability of concur-
rent conflicts and the nature of access volume, data should be horizontally segmented and 
optimized to construct dynamic paths and local load awareness. To quantify concurrency 
performance bottlenecks, a concurrency conflict overhead model is introduced: 

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ �𝜌𝜌𝑗𝑗 ⋅ 𝐾𝐾𝑗𝑗 + 𝜃𝜃𝑗𝑗 ⋅ 𝑅𝑅𝑗𝑗�𝑚𝑚
𝑗𝑗=1           (2) 

Among them, 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  represents the total delay of the system during concurrent pro-
cessing, 𝐾𝐾𝑗𝑗 represents the lock waiting time caused by conflicts in the 𝑗𝑗 data node, and 
𝑅𝑅𝑗𝑗 is the read and write response time of that node; 𝜌𝜌𝑗𝑗 and 𝜃𝜃𝑗𝑗 are the weight coefficients 
of conflict density and access frequency, respectively. By analyzing the model, high con-
flict and high-frequency access data segments can be identified as key optimization objec-
tives in distribution design. 

This system performs horizontal slicing processing through the business aspect, al-
locating transaction data related to different accounts, stores, and payment environments 
to specific servers using hash fields to reduce concurrent collisions [5]. For popular da-
tasets, the method of hot-cold separation and hot path pre-positioning is adopted to en-
sure that frequent access paths have local hit capability and avoid burden on the main 
database. 

In order to achieve dynamic load balancing, the scheduling module will dynamically 
adjust the replica routing based on the read and write rates and resource consumption of 
each partition node, achieving dynamic load balancing. Automatically back up the finan-
cial reports of high-traffic merchants to multiple busy servers during holidays or flash 
sales, and enable read-only path allocation to share the workload of writing and reading. 
The use of regionally distributed unique identifiers and a logical timestamp system avoids 
sequence number competition or chaotic write order caused by concurrent writes. 

Build a two-level caching architecture: namely, the high-speed access hotspot data 
caching part and maintain data consistency through asynchronous updates; Simultane-
ously introducing write protection and update merge technology to reduce the pressure 
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on the main database. The handling of cross-node transactions adopts a method of sub-
mitting locally and confirming remotely to achieve data consistency, which can ensure 
that high concurrency does not interfere with the operation of the main process. 

The overall architecture of the platform achieves data diversion, reduces hotspots 
and load balancing during high concurrency system access, improves the real-time pro-
cessing capability and availability of the system, and provides data guarantee for stable 
operation during business peak periods. 

3.3. Collaborative Optimization Path for Consistency and Scalability 
To achieve a dynamic balance between consistency and scalability in high concur-

rency scenarios, the following performance trade-off model can be introduced: 
𝑈𝑈 = 𝛼𝛼 ⋅ 𝑆𝑆 − 𝛽𝛽 ⋅ 𝐸𝐸            (3) 
Among them, 𝑈𝑈 represents the comprehensive performance score of the system, 𝑆𝑆 

is the service expansion capability of the system per unit time (such as throughput and 
node concurrency processing capability), 𝐸𝐸 is the consistency maintenance cost (such as 
synchronization delay and write collision rate), 𝛼𝛼and 𝛽𝛽 are the scalability weight and 
consistency sensitivity coefficient, respectively. This model provides a quantitative eval-
uation framework for guiding the dynamic adjustment of consistency levels and system 
distribution strategies. 

At the service design level, a strategy of module decoupling and data partitioning is 
adopted, and a state snapshot check is applied to ensure that all write actions are recog-
nized by multiple backup instances. On non-transaction core routes, a combination of se-
rial consistency management, MVCC technology, and local compensation algorithms is 
used to reduce the overall system transaction blocking rate. At the edge of the route, such 
as behavior recording, web browsing data, and analysis reports, the final consistency pro-
cessing strategy is selected, and data is supplemented through asynchronous message de-
livery and scheduled tasks. 

In interface design, based on the specific error handling logic implemented by the 
task, it is possible to choose which unified channel to use. Binding strongly consistent 
nodes to financial interfaces for atomic writing and transaction locking; The state class 
interface allows for synchronous backup or temporary cache reading, with timestamp and 
version information added for comparison and update; The information interface adopts 
fast screenshots of replicas and delayed library integration to provide real-time services 
to users, reducing the burden on the main library. 

To achieve adaptive control during runtime, the scheduler dynamically tracks the 
performance of the system based on the above equation, and actively initiates a down-
grade operation when efficiency decreases: turning some secondary connections into 
asynchronous write mode; making read operations on the server read-only. There are sep-
aration and conflict avoidance operations in the transaction flow. We have also built a fast 
rollback and log patching system to ensure the recoverability and verifiability of data sta-
tus below the degraded consistency level. 

This parallel path provides the end components with greater dynamic adjustment 
flexibility while ensuring the steady state of the main link, providing the system with an 
effective structural support for dynamic response to large shocks and rapid business ad-
aptation and expansion. 

4. Typical Case Analysis of 3 High-Concurrency Payment Systems 
4.1. Asynchronous Consistency Transformation Case of a Certain Aggregate Payment Platform 

The aggregate payment platform discussed in this case has a daily trading demand 
of over 100 million times, with a peak TPS of 96000 and an average response time of over 
270ms. Additionally, the write channel blocking rate continues to rise, as account verifi-
cation, point changes, SMS push, and other tasks are embedded in the business process, 
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seriously affecting the throughput of the main process and system availability. The com-
parison of key indicators before and after asynchronous consistency transformation is 
shown in Table 2. 

Table 2. Comparison of key indicators before and after asynchronous consistency transformation. 

Indicator items Before refactoring After refactoring 
Average response time 270ms 112ms 

TPS peak value 96 thousand 14.5thousand 
Write blocking rate High ↓82% 

SLA availability 98.7% 99.999% 
In the architecture reconstruction, the platform breaks down the processed payment-

related content into a main chain and asynchronous event streams. The main chain han-
dles deduction and financial storage, while the remaining content is sent through the 
Kafka cluster and asynchronously consumed by subsystems such as points, promotions, 
and settlements. By using an idempotent verification method, consumption state tracking, 
implementing a failure recovery retry strategy using Redis, and allowing message pro-
cessing timeout within 3 seconds, the compensation success rate is 99.999%. 

After the transformation, the average response time of the main chain decreased to 
112ms, the write blocking rate decreased by 82%, the TPS peak was 145000 times, and the 
SLA increased to 99.999%. Some of the main performance indicators of the system have 
been significantly improved, indicating that the asynchronous adaptation of consistency 
to complex transaction processes has practical significance. 

4.2. Concurrent Performance Optimization Case of a Certain E-commerce Flash Sale System 
The e-commerce website's "Double 11" limited-time flash sale event has a high level 

of concurrent pressure, with a peak TPS of 21.7 thousand and a conflict rate of over 11% 
for inventory updates. The average time taken is over 300ms, and the SLA availability is 
only about 98.5%. The main issue is the performance bottleneck caused by lock contention 
in the centralized inventory deduction mode, which leads to high system concurrency. 
The comparison of key indicators before and after the transformation of the flash sale sys-
tem is shown in Table 3. 

Table 3. Comparison of key indicators before and after the transformation of the flash sale system. 

Indicator items Before renovation After transformation 
Peak TPS 21.7thousand 20thousand 

Write conflict rate >11% <0.01% 
Average response time >300ms 92ms 

SLA availability About 98.5% 99.999% 
To improve solving efficiency, the platform adopts an optimized architecture of 

"front-end token + local withholding + asynchronous confirmation". Before the activity is 
initiated, the inventory is cached in Redis, and each user's request is subjected to restricted 
traffic filtering before implementing the atomic subtraction operation locally and storing 
it in the Kafka queue. The backend consumers are asynchronously stored in the database, 
and optimistic lock anti-collision is introduced to automatically reverse the inventory 
value cached in Redis in case of conflicts. 

After the system reconstruction, the peak TPS remained stable at 20 thousand, the 
inventory write conflict rate was reduced to less than 0.01%, the average response time 
for critical processes was significantly shortened to 92ms, and the SLA requirement for 
availability reached 99.999%. The system has significantly improved in parallel processing 
capability, write success probability, and service availability. 

 

https://pinnaclepubs.com/index.php/EJACI


European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI 
 

Vol. 1 No. 3 (2025) 45  

4.3. Data Expansion Architecture Reconstruction Case of a Financial Payment Channel 
The financial service platform has access to over 90 banking service channels, and the 

original design has exposed significant bottlenecks in high-concurrency situations. The 
peak TPS of a single node is only 9000, the database storage latency is 210ms, and some 
transactions take more than 900s to process. The overall SLA availability is around 98.9%, 
making it difficult to adapt to the rapidly developing and exponentially growing demand 
for massive inputs and clearing. The comparison of key indicators before and after the 
reconstruction of the payment channel system is shown in Table 4. 

Table 4. Comparison of key indicators before and after reconstruction of the payment channel sys-
tem. 

Indicator items Before refactoring After refactoring 
Single-node TPS 0.9thousand 2.3thousand 

Storage delay 210ms 82ms 
Slowest delay in liquidation >900s 180s 

SLA availability About 98.9% 99.999% 
To enhance the functionality of the system and expand the entire system, the archi-

tecture of "channel segmentation + asynchronous access + database decoupling" is 
adopted to redesign the entire system. After separating transaction information according 
to different channel numbers, Kafka is used for asynchronous storage, Sharding JDBC is 
used for vertical database scaling, and balanced and independent channels are achieved 
during high concurrency with the support of several available web portals. 

After optimization, the TPS of a single node has been increased to 2.3thousand, the 
data access time has become 82ms, the worst-case waiting time for settlement has become 
180s, and the SLA guarantee rate has reached 99.999%. The key indicators of the system 
have been improved to varying degrees, enhancing the stability and scalability of the 
transmission channels in the financial industry. 

5. Conclusion 
This article focuses on the challenges of data consistency and performance scalability 

in high-concurrency payment systems. A solution covering hierarchical consistency man-
agement, data allocation optimization, and collaborative adjustment paths is proposed, 
and a quantitative guidance for strategy selection and architecture updates based on con-
sistency and parallel efficiency cost models and parallel utility functions is established. In 
practical scenarios such as aggregated payments, flash payments, and financial channels, 
this method improves parallel performance while ensuring availability. The results indi-
cate that in complex environments, the coordinated coexistence of consistency and scala-
bility can be achieved through a module decoupling strategy, providing reference and 
theoretical support for the continuous evolution of highly available payment systems. 
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