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Abstract: With the widespread use of digital images in communication and storage, detecting hid-
den information embedded through steganography has become increasingly important for infor-
mation security. This review presents a comparative analysis of three classical statistical steganaly-
sis techniques — Histogram-based method, RS (Regular-Singular) analysis, and Chi-square test — 
applied to grayscale images. Each method's underlying principles, sensitivity to embedding rates, 
computational complexity, and robustness are systematically discussed. Experimental results on 
BMP image datasets with varying embedding rates highlight their respective strengths and limita-
tions, including detection accuracy, processing efficiency, and error characteristics. The review also 
explores the adaptability of these methods to different embedding scenarios and potential improve-
ments through multi-scale analysis and hybrid approaches. This work aims to provide researchers 
and practitioners with a comprehensive understanding of foundational statistical steganalysis 
methods and to guide future developments in image steganography detection. 
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1. Introduction 
With the rapid development of digital communication and multimedia technologies, 

the security of digital images has become a growing concern in the field of information 
security. Image steganography, as a technique for concealing secret data within seemingly 
innocuous image files, poses a significant challenge to data integrity and privacy protec-
tion. Unlike cryptography, which protects the content of communication, steganography 
focuses on concealing the very existence of the message. This makes steganographic con-
tent particularly difficult to detect and has thus attracted widespread attention in digital 
forensics and cybersecurity research. 

Among the various steganographic techniques, Least Significant Bit (LSB) embed-
ding is one of the most widely used methods due to its simplicity, high embedding capac-
ity, and minimal visual distortion. In LSB steganography, the least significant bits of pixel 
values are modified to encode hidden information. While these changes are visually im-
perceptible, they often disrupt the statistical distribution of pixel values in subtle but de-
tectable ways. As such, effective steganalysis — the process of detecting the presence of 
hidden data — has become a critical focus for researchers and practitioners aiming to 
counter steganographic threats. 

To address the challenge of LSB steganography detection, various statistical steganal-
ysis techniques have been developed. Among them, three classical and extensively stud-
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ied methods include: the Histogram-based method, which analyzes changes in pixel in-
tensity distributions; the RS (Regular-Singular) analysis, which exploits predictable flip-
ping patterns in pixel groups; and the Chi-square test, which detects statistical irregulari-
ties in the parity distribution of pixel values. Each of these methods relies on distinct sta-
tistical assumptions and modeling approaches, making their performance characteristics 
vary across different embedding scenarios. 

This review aims to provide a systematic comparative analysis of these three ste-
ganalysis techniques in the context of grayscale images. By synthesizing existing literature 
and comparing their theoretical foundations, detection accuracy, sensitivity to embedding 
rates, and computational efficiency, the review highlights the strengths and limitations of 
each method. The goal is to offer researchers and engineers a comprehensive understand-
ing of these foundational techniques, and to identify potential directions for improving 
steganalysis performance in real-world applications. 

2. Overview of the Three Statistical Techniques  
Statistical steganalysis methods exploit the subtle changes in image pixel distribu-

tions caused by the embedding of secret information. Among the many techniques pro-
posed, histogram-based analysis, RS steganalysis, and chi-square analysis represent three 
classical and widely applied approaches. Each method uses different statistical properties 
and assumptions to detect steganographic modifications, particularly in grayscale images. 
This section provides an overview of the principles, sensitivity characteristics, and typical 
application scenarios of these three techniques [1]. 

2.1. Histogram-Based Method 
The histogram-based steganalysis method detects steganography by analyzing the 

distribution of pixel intensities in grayscale images [2]. When least significant bit (LSB) 
embedding modifies pixel values, the originally smooth or natural distribution of pixel 
intensities tends to be disturbed. Specifically, the pixel histogram often shows character-
istic distortions such as flattening or anomalies in neighboring intensity bins. 

This method is grounded in the idea that the original image's histogram follows cer-
tain statistical regularities, and embedding operations introduce perturbations that can be 
identified through histogram comparison. By calculating differences between pairs of ad-
jacent histogram bins or using statistical metrics such as the histogram characteristic func-
tion, this method highlights deviations from expected distributions [3]. 

The histogram-based approach is simple to implement and computationally efficient. 
However, it tends to be more sensitive to medium or high embedding rates where pixel 
modifications are more widespread and pronounced. At low embedding rates, the histo-
gram changes may be too subtle to detect reliably [3]. Furthermore, this method may be 
less effective against sophisticated embedding schemes designed to preserve histogram 
characteristics. 

2.2. RS Steganalysis 
RS steganalysis, proposed in the early 2000s, is based on the classification of image 

pixel blocks into Regular (R) and Singular (S) groups according to their smoothness prop-
erties. The method applies a perturbation function to the least significant bits of pixels 
within blocks and measures the resulting change in smoothness [4]. 

To quantify this smoothness, a function is defined over a group of n neighboring 
pixels G = {g1, g2, g3. . . , , gn} as follows: 

f(G) = �|gi+1 − gi|
n−1

i=1

 

This function reflects the local variation in intensity; lower values indicate smoother 
regions. By applying this function before and after modifying the LSBs using a flipping 
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function (i.e., flipping 0 ↔ 1), RS analysis determines whether a block becomes more or 
less smooth. If the smoothness increases after flipping, the block is considered Singular; 
otherwise, it is Regular. 

The key idea is that embedding LSB information alters the local pixel correlation and, 
consequently, the distribution of Regular and Singular blocks. RS analysis thus counts 
four types of blocks based on forward and reverse perturbation operations: Regular and 
Singular blocks before and after flipping the least significant bits. Let R+ and R− denote 
the number of Regular blocks after positive and negative flipping, and S+ and S− denote 
their Singular counterparts [5]. The estimated embedding rate e can then be approximated 
by: 

e =
S− − S+

(R+ − R−) + (S− − S+)
 

This expression captures the asymmetry introduced by embedding, providing a 
quantitative estimation of the hidden payload's density. 

Mathematically, RS analysis involves calculating the smoothness function and apply-
ing conditions that compare the counts of these blocks to detect embedding. This ap-
proach is robust and relatively sensitive even at lower embedding rates. Its block-based 
design also allows it to capture local changes, making it suitable for detecting spatially 
distributed steganography. However, the method can be computationally intensive de-
pending on block size and image resolution. 

2.3. Chi-Square Analysis 
Chi-square steganalysis utilizes the parity distribution of pixel values, focusing on 

the balance between even and odd pixel counts in image blocks. In natural images, this 
distribution tends to be uneven due to inherent image content. However, LSB embedding 
tends to randomize the parity, causing the distribution to approach a balanced state. 

To detect such disruptions, the image is divided into non-overlapping blocks, and 
the frequency of even and odd pixel values is counted within each block. The method then 
applies the classic chi-square test to evaluate whether the observed parity distribution 
deviates significantly from what would be expected in a cover image [6]. 

The chi-square statistic is computed as: 

𝑥𝑥2 = �
(𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)2

𝐸𝐸𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 

where 𝑂𝑂𝑖𝑖  and 𝐸𝐸𝑖𝑖  denote the observed and expected frequencies, respectively, for 
each category iii. In the context of parity analysis, the two categories are "even" and "odd" 
pixel values, and k = 2. For a natural image without hidden data, the parity distribution 
is typically skewed; however, embedding data via LSB flipping tends to equalize the 
counts of even and odd pixels, thereby reducing the chi-square value [7]. 

The resulting statistic is compared against a chi-square distribution to compute a cor-
responding p-value. If the p-value exceeds a predefined threshold (commonly set at 0.5 or 
0.95), the block is considered statistically anomalous and flagged as potentially containing 
hidden data. This probabilistic framework enables detection even when visual or struc-
tural clues are absent [5]. 

An advantage of this technique is its adaptability to a multi-scale blocking mecha-
nism, where image blocks of varying sizes (e.g., 8 × 8, 16 × 16, 32 × 32) are analyzed simul-
taneously. This multi-resolution approach enhances detection sensitivity, particularly in 
images with spatial heterogeneity or when the embedding rate is low [8]. It also improves 
robustness across different image content types by reducing reliance on fixed block sizes. 

While chi-square analysis is effective for detecting uniform perturbations in pixel 
parity, it may suffer from false positives in complex images or those with naturally bal-
anced parity distributions. Nevertheless, its model independence, statistical rigor, and 
ease of implementation make it a valuable and versatile tool in steganalysis. 
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In order to more intuitively compare the characteristics of these three methods, Table 
1 summarizes their principles, sensitivity, advantages and disadvantages. 

Table 1. Comparison of Histogram-Based, RS, and Chi-Square Steganalysis Techniques. 

Feature Histogram-Based Method RS Steganalysis Chi-Square Analysis 

Principle 
Pixel intensity distribution 

changes 

Regular/Singular block 
classification with smooth-

ness perturbation 

Parity (even/odd) dis-
tribution balance 

Statistical Basis 
Histogram shape and adjacent 

bin differences 
Smoothness function and 

block flipping 
Chi-square test on par-

ity counts 

Sensitivity 
Medium to high embedding 

rates 
Effective at low to medium 

embedding rates 

Multi-scale sensitivity, 
good for low embed-

ding 
Computational 

Complexity 
Low to moderate Moderate to high Moderate 

Advantages Simple, intuitive 
Robust local detection, 

good accuracy 
Statistically rigorous, 
multi-scale capability 

Limitations 
Less effective at low embed-

ding; vulnerable to histogram-
preserving embedding 

Computationally intensive; 
block size choice affects ac-

curacy 

Possible false positives 
in complex images 

3. Experimental Comparison 
This section presents a comparative experimental analysis of the histogram-based, 

RS, and chi-square statistical steganalysis techniques applied to grayscale BMP images 
under varying embedding rates from 0% to 100%. The experiments aim to evaluate detec-
tion accuracy, processing time, and the robustness of each method. 

The image dataset consists of 100 original BMP images with LSB embedding applied 
at different embedding rates, ranging from no embedding (0%) to full embedding (100%), 
including intermediate levels such as 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, and 95%. 
This comprehensive range enables an in-depth assessment of each method's sensitivity to 
different embedding intensities [9]. 

Each method was implemented following their core principles: the histogram-based 
method analyzes the gray-level distribution perturbation; the RS method partitions im-
ages into Regular and Singular blocks and applies perturbation functions for statistical 
feature extraction; the chi-square method uses pixel parity distribution and multi-scale 
blocking to detect anomalies. The implementations prioritize methodological consistency 
to ensure a fair comparison [10]. 

3.1. Detection Accuracy vs. Embedding Rate 
Figure 1 illustrates the detection accuracy of the three methods as a function of em-

bedding rate. As expected, all methods show improved accuracy with increasing embed-
ding rates. The RS analysis demonstrates optimal performance in the medium embedding 
range (45%–65%), while the chi-square method exhibits superior sensitivity at higher em-
bedding rates (>65%). The histogram method, being the simplest, has comparatively lower 
accuracy, particularly at low embedding rates. 
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Figure 1. Detection Accuracy vs. Embedding Rate for Histogram, RS, and Chi-Square Methods. 

3.2. Average Processing Time 
Processing efficiency is a key factor for practical deployment, especially in large-scale 

digital forensics or real-time content filtering systems. Figure 2 compares the average pro-
cessing time per image for the three steganalysis methods across embedding rates ranging 
from 0% to 100%. 

 
Figure 2. Average Processing Time vs. Embedding Rate for Histogram, RS, and Chi-Square Meth-
ods. 

The histogram-based method consistently demonstrates the shortest processing time, 
averaging approximately 0.03-0.05 seconds per 512 × 512 grayscale image. This is largely 
due to its reliance on simple frequency counting and minimal mathematical operations. 
Its speed makes it well-suited for applications requiring high throughput, although this 
comes at the expense of detection accuracy in subtle embedding cases [11]. 

The RS method, by contrast, is more computationally demanding. Its processing time 
ranges from 0.12 to 0.20 seconds per image, depending on block size and image complex-
ity. The method involves partitioning the image into non-overlapping blocks, applying 
perturbation functions, and evaluating Regular and Singular classifications, all of which 
contribute to its higher time complexity [12]. Interestingly, the time increases slightly with 
moderate embedding rates (e.g., 45-65%), where block transitions become less predictable, 
thus requiring more iterations to stabilize the classification statistics. 

The chi-square method shows moderate performance, with an average processing 
time between 0.07 and 0.10 seconds. Its efficiency benefits from simple parity counting 
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and the ability to parallelize multi-scale block analysis. Unlike RS, its runtime remains 
relatively stable across embedding rates, making it more predictable for scheduling in 
time-constrained environments. 

Overall, while the histogram method is the fastest, the RS and chi-square methods 
provide a trade-off between speed and detection accuracy. For time-critical applications 
where moderate accuracy is acceptable, histogram-based analysis may suffice; however, 
for forensic tasks demanding reliability, the extra computation time of RS or chi-square 
methods may be justified. 

3.3. Error Analysis: False Positives and False Negatives 
At low embedding rates, all three methods face challenges in reliably distinguishing 

steganographic images from clean images, leading to elevated false positive rates. This is 
primarily because the statistical artifacts introduced by embedding are too subtle to be 
distinguished from natural image variability. 

The chi-square method tends to produce a relatively higher false positive rate at em-
bedding rates below 35%, especially in grayscale images with naturally balanced parity 
distributions. For example, in a test case with a 20% embedding rate, 14 out of 100 clean 
images were falsely flagged as steganographic by the chi-square test. This was particularly 
prevalent in images containing repetitive patterns, such as textures or synthetic gradients, 
which naturally exhibit even-odd parity balance and thus mimic the effects of LSB em-
bedding [13]. 

The RS method, while generally effective in the medium embedding range, showed 
a drop in sensitivity at both very low and very high embedding rates. At low rates (<15%), 
the perturbations induced by LSB embedding are insufficient to cause consistent shifts in 
block classification (Regular vs. Singular). At high rates (>85%), the pixel structure be-
comes highly randomized, diminishing the smoothness differences that RS depends upon, 
and leading to occasional false negatives. 

Histogram-based detection, while computationally efficient, lacks robustness due to 
its reliance on global gray-level statistics. It exhibited significant misclassification 
throughout the embedding range, with false positives often occurring in images with high 
natural contrast or artificial lighting, which distort histogram distributions even without 
embedding. Additionally, false negatives were observed in low-contrast images where 
LSB alterations did not produce visible histogram deviations. 

In summary, the error characteristics of these methods are tightly linked to both the 
embedding rate and intrinsic properties of the input images. Future improvements could 
involve incorporating adaptive thresholds or hybrid models that combine global and local 
statistical cues to mitigate these limitations more effectively. 

Table 2 summarizes the comparative strengths and limitations observed in these ex-
periments. 

Table 2. Comparison of Statistical Steganalysis Methods. 

Method Core Principle 
Sensitivity 

Range 
Processing 
Efficiency Strengths Limitations 

Histogram-
based 

Detects gray-level 
distribution distor-

tions 

Low to me-
dium embed-

ding rates 

High (fast-
est) 

Simple, fast, easy to 
implement 

Low accuracy, es-
pecially at low em-

bedding rates 

RS Ste-
ganalysis 

Regular/Singular 
blocks and pertur-

bation function 

Medium em-
bedding rates 

Moderate to 
low (slower) 

Good at detecting 
moderate embedding 

levels 

Less sensitive at 
very low or very 
high embedding 

Chi-square 
Analysis 

Pixel parity distri-
bution and multi-

scale blocking 

High embed-
ding rates 

Moderate 
High accuracy at 
high embedding, 
multi-scale robust 

Higher false posi-
tives at low em-

bedding 

  

https://pinnaclepubs.com/index.php/EJACI


European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI 
 

Vol. 1 No. 2 (2025) 20  

4. Discussion 
The comparative analysis of histogram-based, RS, and chi-square steganalysis tech-

niques provides meaningful insights into their relative strengths, limitations, and practi-
cal suitability in different scenarios of LSB embedding in grayscale images. This section 
synthesizes the experimental findings and examines each method from multiple perspec-
tives, including detection reliability, computational cost, sensitivity to embedding rates, 
and adaptability to image complexity. Furthermore, we consider the role of multi-scale 
strategies and explore the prospects for future developments in the field. 

4.1. Detection Performance Across Embedding Rates 
One of the most critical factors influencing steganalysis effectiveness is the embed-

ding rate. The results presented in Figure 1 indicate that detection accuracy generally im-
proves as the embedding rate increases. Among the three techniques, chi-square analysis 
exhibits the most stable and scalable performance across a wide range of embedding in-
tensities. Particularly at high embedding levels (above 65%), the chi-square method 
achieves near-perfect accuracy, leveraging its statistical sensitivity to parity randomiza-
tion. 

RS steganalysis performs best in the mid-range embedding intervals (approximately 
35% to 65%), where the structural changes in pixel block correlations are sufficiently pro-
nounced to be captured by the perturbation-based classification scheme. At very low or 
very high embedding rates, however, its performance slightly degrades, likely due to in-
sufficient local distortion or excessive noise masking the embedded patterns. 

The histogram-based method shows limited effectiveness at low embedding rates 
(<25%) due to the subtlety of pixel-level changes. It relies heavily on global distribution 
patterns, which are more likely to remain statistically stable under light embedding. Only 
when the embedded payload becomes large enough to distort the histogram does the 
method yield reliable detection results. 

4.2. Computational Efficiency and Practicality 
From a deployment perspective, computational efficiency is vital, especially in batch 

processing or real-time detection applications. As illustrated in Figure 2, the histogram 
method clearly excels in speed, owing to its reliance on a single-pass analysis of gray-level 
frequencies. Its lightweight design makes it ideal for rapid screening, albeit at the cost of 
reduced detection depth. 

RS steganalysis, while more accurate in certain embedding scenarios, incurs higher 
computational overhead. Its block-wise perturbation and classification processes scale 
with image resolution and block size, making it less suitable for time-sensitive environ-
ments unless optimized. 

The chi-square method, despite involving multi-scale analysis, maintains a balance 
between detection performance and processing speed. It benefits from efficient statistical 
computations and reduced dependence on image structure, offering both robustness and 
scalability. 

4.3. False Positives and Misclassification Patterns 
A closer look at misclassification patterns reveals important differences. The chi-

square method, though powerful in detection, tends to produce higher false positive rates 
when dealing with images that naturally exhibit balanced parity distributions, especially 
at low embedding rates. This is consistent with the assumption that parity randomness 
introduced by LSB embedding is statistically similar to natural image noise in certain cases. 

RS steganalysis demonstrates more balanced false positive and false negative rates 
in mid-range scenarios but shows inconsistent behavior outside its optimal range. Histo-
gram-based analysis, on the other hand, suffers from significant underperformance at low 
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embedding rates and may misclassify clean images if their natural histograms deviate 
from typical patterns (e.g., due to high contrast or synthetic content). 

4.4. Robustness Enhancement via Multi-Scale Design 
One of the standout features of the chi-square method is its ability to apply a multi-

scale blocking strategy, significantly enhancing its robustness. By analyzing parity distri-
butions across different block sizes (e.g., 8 × 8, 16 × 16, 32 × 32), the method captures both 
localized and global embedding artifacts. This hierarchical approach is particularly effec-
tive in detecting steganographic payloads that are spatially non-uniform or concentrated 
in specific regions. 

Multi-scale design also helps mitigate the sensitivity of block-based methods to local 
image structure. Smaller blocks capture fine-grained distortions, while larger blocks pro-
vide contextual information and statistical stability. This feature distinguishes the chi-
square method as a versatile and adaptable tool, especially in heterogeneous image da-
tasets. 

4.5. Future Directions and Emerging Trends 
While the statistical methods reviewed in this paper are foundational and interpret-

able, they are increasingly challenged by modern steganography techniques designed to 
minimize statistical artifacts. To address this limitation, a promising direction involves 
hybridizing classical statistical models with modern machine learning techniques. 

For instance, integrating handcrafted features (e.g., chi-square statistics, RS indica-
tors) into machine learning pipelines — such as support vector machines or convolutional 
neural networks — can enhance detection performance, especially in complex or adver-
sarial environments. Moreover, end-to-end deep learning approaches, when supplied 
with sufficient labeled data, have shown potential in automatically learning discrimina-
tive representations that may surpass handcrafted features. 

Another area of exploration is adaptive or content-aware steganalysis, where meth-
ods dynamically adjust their detection thresholds or feature extraction strategies based on 
local image complexity or texture characteristics. Such techniques may reduce false posi-
tives and improve generalizability. 

In conclusion, each of the three methods exhibits distinct advantages under specific 
conditions. Histogram analysis is efficient and easy to implement, RS steganalysis excels 
in mid-range detection with local sensitivity, and chi-square analysis offers the best over-
all accuracy and scalability through multi-scale enhancement. Future steganalysis systems 
may benefit from fusing these techniques with intelligent algorithms to achieve improved 
robustness and adaptability in real-world scenarios. 

5. Conclusion  
This study conducted a systematic comparison of three classical statistical steganal-

ysis techniques — histogram-based analysis, RS (Regular-Singular) analysis, and chi-
square analysis — within the context of grayscale LSB image steganography. By examin-
ing their theoretical underpinnings, detection accuracy under varying embedding rates, 
computational efficiency, and susceptibility to false classifications, the strengths and lim-
itations of each method have been clarified. 

The histogram-based method is simple, fast, and easy to implement. It performs best 
when the embedding rate is moderate to high, where visible distortions in pixel intensity 
distributions are more likely to occur. However, its reliability decreases significantly in 
low embedding scenarios, and it is vulnerable to advanced histogram-preserving embed-
ding schemes. 

RS steganalysis offers strong performance in medium embedding rate ranges due to 
its sensitivity to local changes in pixel smoothness. Its block-based design makes it more 
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robust than the histogram method, though it requires more computational resources and 
may be sensitive to block size configurations. 

The chi-square analysis, with its multi-scale blocking strategy, demonstrates the best 
overall detection performance, particularly at high embedding rates. Its statistical rigor 
and adaptability across block sizes enhance its robustness, although it can produce higher 
false positives in certain naturally balanced images. 

For practical steganalysis, a combination of methods may be ideal, especially in en-
vironments with unknown or variable embedding rates. Histogram analysis can be used 
for fast initial screening, followed by RS or chi-square methods for deeper inspection. 
Looking ahead, hybrid approaches that integrate statistical features with machine learn-
ing or deep learning models hold strong promise for improving detection accuracy and 
generalization across diverse image types and embedding strategies. 
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