Digital Transformation and ESG Rating Disagreement: A Dynamic Relationship Test Based on Panel VAR Model
DOI:
https://doi.org/10.71222/kq12jr56Keywords:
digital transformation, ESG rating disagreement, panel VAR model, information asymmetry, financing constraintsAbstract
Previous research focuses on the unidirectional relationship between digital transformation and ESG rating disagreement, even though some evidence suggests that ESG rating disagreement can influence digital transformation, which in turn reduces ESG rating disagreement. Based on the panel VAR, we study the simultaneous relationship between digital transformation and ESG rating disagreement employing data of A-share listed companies from 2011 to 2023 and ESG ratings from eight agencies. Using the panel VAR model, impulse response functions, and variance decomposition, this study provides new empirical evidence on the dynamic relationship between ESG and digital transformation. The findings reveal that ESG rating disagreement and digital transformation exhibit a symmetrically bidirectional dynamic relationship. It is further suggested that ESG rating disagreement and digital transformation exhibit lagged effects on each other.
References
1. A. Raj, A. Jain, P. Pathak, V. M. Singh, S. K. Singh, S. P. Singh et al., "Barriers to the adoption of Industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective," Int. J. Prod. Econ., vol. 224, 2020, Art. no. 107546, doi: 10.1016/j.ijpe.2019.107546.
2. J. T. Mentzer, W. DeWitt, J. S. Keebler, S. Min, N. W. Nix, C. D. Smith et al., "Defining supply chain management," J. Bus. Logist., vol. 22, no. 2, pp. 1–25, 2001, doi: 10.1002/j.2158-1592.2001.tb00001.x.
3. A. Hjalmarsson, D. Rudmark, J. S. Lindgren, J. Hedestig, K. Bergek, M. A. Bergvall-Kåreborn et al., "Beyond innovation contests: A framework of barriers to open innovation of digital services," in Proc. Eur. Conf. Inf. Syst. (ECIS), Tel Aviv, Israel, Jun. 2014, pp. 1–13.
4. A. A. Pflaum and P. Gölzer, "The IoT and digital transformation: Toward the data-driven enterprise," IEEE Pervasive Comput., vol. 17, no. 1, pp. 87–91, 2018, doi: 10.1109/MPRV.2018.011591066.
5. . F. Wamba, S. Akter, A. Edwards, G. Chopin, D. Gnanzou, M. R. Asare et al., "Big data analytics and firm performance: Effects of dynamic capabilities," J. Bus. Res., vol. 70, pp. 356–365, 2017, doi: 10.1016/j.jbusres.2016.08.009.
6. E. Dimson, P. Marsh, and M. Staunton, "Practical applications of divergent ESG ratings," Pract. Appl., vol. 9, no. 3, pp. 1–7, 2021, doi: 10.3905/pa.9.3.466.
7. D. Avramov, S. T. Jostova, A. Philipov, M. Y. Yao, H. Hung, J. Kwon et al., "Sustainable investing with ESG rating uncer-tainty," J. Financ. Econ., vol. 145, no. 2, pp. 642–664, 2022, doi: 10.1016/j.jfineco.2021.09.009.
8. B. R. Gibson, P. Krueger, and P. S. Schmidt, "ESG rating disagreement and stock returns," Financ. Anal. J., vol. 77, no. 4, pp. 104–127, 2021, doi: 10.1080/0015198X.2021.1963186.
9. Q. Zeng, Y. Liu, L. Guo, F. Wang, S. Xu, H. Xie et al., "ESG rating disagreement, volatility, and stock returns," Financ. Res. Lett., vol. 72, 2025, Art. no. 106602, doi: 10.1016/j.frl.2024.106602.
10. J. Wang, Q. Yu, S. Zhang, Y. Li, M. Ren, X. Chen et al., "ESG rating disagreement and stock returns: Evidence from China," Int. Rev. Financ. Anal., vol. 91, 2024, Art. no. 103043, doi: 10.1016/j.irfa.2023.103043.
11. J. Zhou and X. Lei, "ESG rating uncertainty and corporate financial misconduct," J. Bus. Res., vol. 189, 2025, Art. no. 115092, doi: 10.1016/j.jbusres.2024.115092.
12. M. Ren, C. Cao, and Z. Shen, "ESG rating disagreement, financing costs, and enterprise value," in Proc. Int. Conf. Manag. Sci. Eng. Manag., Singapore: Springer Nature, 2024, pp. 681–692, doi: 10.1007/978-981-97-5098-6_69.
13. J. Wu, "Economic policy uncertainty, investor sentiment, and stock price synchronisation: Evidence from China," Math. Probl. Eng., vol. 2022, Art. no. 7830668, 2022, doi: 10.1155/2022/7830668.
14. A. Tsang, T. Frost, and H. Cao, "Environmental, social, and governance (ESG) disclosure: A literature review," Brit. Account. Rev., vol. 55, no. 1, Art. no. 101149, 2023, doi: 10.1016/j.bar.2022.101149.
15. S. Scalet and T. F. Kelly, "The ethics of credit rating agencies: What happened and the way forward," J. Bus. Ethics, vol. 111, no. 4, pp. 477–490, 2012, doi: 10.1007/s10551-012-1212-y.
16. F. Berg, J. F. Kölbel, and R. Rigobon, "Aggregate confusion: The divergence of ESG ratings," Rev. Finance, vol. 26, no. 6, pp. 1315–1344, 2022, doi: 10.1093/rof/rfac033.
17. L. Wang, Q. Liu, and K. Li, "ESG rating divergence and corporate bond pricing: Information mining or information deteri-oration," Stud. Int. Financ., vol. 3, pp. 87–96, 2024.
18. M. D. Kimbrough, J. J. McWilliams, C. B. Williams, H. Y. Lee, F. Zhou, S. Park et al., "Does voluntary ESG reporting resolve disagreement among ESG rating agencies?," Eur. Account. Rev., vol. 33, no. 1, pp. 15–47, 2024, doi: 10.1080/09638180.2022.2088588.
19. H. Zhang, Z. Gao, and A. Han, "Enterprise digital transformation empowers industry chain linkage: Theoretical and em-pirical evidence," J. Quant. Technol. Econ., vol. 40, no. 5, pp. 46–67, 2023.
20. F. Wu, Y. Wang, L. Zhang, G. Yang, and J. Li, "Enterprise digital transformation and capital market performance: Empirical evidence from stock liquidity," Manag. World, vol. 37, no. 7, pp. 130–144, 2021.
21. A. Jeppsson and O. Olsson, "Blockchains as a solution for traceability and transparency," 2017 [Online]. Available: https://www.diva-portal.org.
22. G. W. Hou and C. X. Gao, "Study on the impact of corporate network structure on enterprise innovation performance from the perspective of digital transformation capability," Sci. Technol. Manag. Res., vol. 42, pp. 106–111, 2022.
23. Q. Huang, Y. Yu, and S. Zhang, "Internet development and productivity growth in manufacturing industry: Internal mechanism and China experiences," China Ind. Econ., vol. 8, no. 1, Art. no. 1019581, 2019.
24. W. W. Zhang and W. M. Jing, "Digital economy regulation and digital transformation of enterprises: A balancing analysis of benefits and costs," J. Quant. Technol. Econ., vol. 21, pp. 2254–2281, 2023.
25. J. Zhu, Y. Chen, M. Zhou, F. Zhao, L. Liu, X. Zhang et al., "Does ESG rating disagreement impede corporate green innova-tion?," Glob. Finance J., vol. 64, 2025, Art. no. 101068, doi: 10.1016/j.gfj.2024.101068.
26. T. M. Whited and G. Wu, "Financial constraints risk," Rev. Financ. Stud., vol. 19, no. 2, pp. 531–559, 2006, doi: /10.1093/rfs/hhj012.
27. C. Lin, X. Mao, and K. Liu, "On the gender of secretary of the board of directors and the quality of information disclosure: Evidence from Shanghai and Shenzhen A shares market," J. Financ. Res., no. 9, pp. 193–206, 2016.
28. H. Ren, "ESG rating disagreement and corporate digital transformation," Financ. Res. Lett., vol. 75, 2025, Art. no. 106903, doi: 10.1016/j.frl.2025.106903.
29. E.-H. Kim and T. P. Lyon, "Greenwash vs. brownwash: Exaggeration and undue modesty in corporate sustainability dis-closure," Organ. Sci., vol. 26, no. 3, pp. 705–723, 2015, doi: 10.1287/orsc.2014.0949.
30. Y. Geng, J. Chen, and R. Liu, "ESG rating disagreement and corporate green innovation bubbles: Evidence from Chinese A-share listed firms," Int. Rev. Financ. Anal., vol. 95, 2024, Art. no. 103495, doi: 10.1016/j.irfa.2024.103495.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jingwei Li (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.