
Pinnacle Academic Press
Proceedings Series

Vol. 1 2025

Vol. 1 (2025) 1

Article

Enhancing Polynomial Function Education in Secondary Math-
ematics through Python-Based Computational Tools: A Dual
Approach to Theoretical Learning and Practical Application
Yixuan Li 1,*

1 Shoreland Lutheran High School, Somers, Kenosha, WI, USA
* Correspondence: Yixuan Li, Shoreland Lutheran High School, Somers, Kenosha, WI, USA

Abstract: This paper explores the integration of Python-based computational tools in secondary
mathematics education, specifically for enhancing the understanding and application of polynomial
functions. It addresses the challenges posed by traditional teaching methods, which often involve
complex mathematical concepts beyond the typical secondary curriculum. By implementing Python
tools that allow students to input equations and receive immediate computational assistance, the
study demonstrates how these technologies can support and simplify polynomial function educa-
tion. This approach not only makes learning more accessible but also aligns with contemporary
educational practices that emphasize interactivity and a student-centered approach to learning. Ad-
ditionally, the paper discusses the balance between using computational tools and traditional meth-
ods to foster a comprehensive understanding of mathematical principles. The implications for fu-
ture educational practices and the development of computational thinking are also considered, em-
phasizing the potential benefits and limitations of technology in educational settings.

Keywords: polynomial functions; Python-based tools; secondary mathematics education; compu-
tational thinking; interactive learning

1. Introduction
In the realm of secondary mathematics education, understanding and solving poly-

nomial functions are essential for students’ mathematical development. Polynomial func-
tions not only form the basis for more advanced studies in mathematics and sciences but
also foster critical thinking and problem-solving skills [1]. The ability to manipulate and
solve equations involving polynomial expressions is crucial, as these skills are applicable
in various real-world contexts, from physics to economics, providing a foundational tool-
set for understanding complex relationships [2].

Despite the availability of numerous methods for solving polynomial functions, such
as symbolic computation and numerical approaches, these techniques often present sig-
nificant challenges for secondary students [3]. Traditional methods can be too abstract or
complex, sometimes involving advanced mathematical concepts beyond the secondary
curriculum, which may hinder students’ comprehension and engagement [2]. The gap
between theoretical methodologies and practical application can hinder effective learning
and engagement, particularly for students who struggle with abstract mathematical con-
cepts.

Moreover, classroom environments frequently lack the tools necessary to provide in-
dividualized instruction tailored to varying student needs. The traditional one-size-fits-

Received: 17 March 2025

Revised: 22 March 2025

Accepted: 09 April 2025

Published: 12 April 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Open Access

Pinnacle Academic Press Proceedings Series https://pinnaclepubs.com/index.php/PAPPS

Vol. 1 (2025) 2

all approach often fails to accommodate learners who require more interactive or visual
methods to grasp mathematical concepts. The increasing demand for incorporating digital
literacy and computational thinking into the curriculum further emphasizes the need for
innovative teaching strategies. Python, a widely used programming language in both ac-
ademic and professional fields, offers an ideal platform for developing such educational
tools. Its readability, extensive library support, and ability to handle complex mathemat-
ical operations make it accessible even for beginners.

Therefore, this paper explores how integrating Python-based computational tools
into secondary mathematics education can serve as a bridge between complex polynomial
theory and student comprehension. It posits that such an approach supports diverse
learning styles and promotes active engagement, while also reinforcing foundational
skills and introducing students to essential elements of computational thinking. By merg-
ing theoretical instruction with practical, technology-driven tools, educators can create a
more inclusive, effective, and forward-thinking educational environment.

2. Innovations in Teaching Polynomial Functions: Python-Based Solutions
Addressing the complexities associated with traditional methods of solving polyno-

mial functions, recent educational innovations have leveraged technology to enhance
learning and engagement. A pioneering approach involves the use of Python-based soft-
ware tools designed to simplify the process of solving polynomial functions. These tools
allow students to input polynomial equations and receive immediate solutions, thereby
facilitating a better understanding of the concepts and providing a practical way to verify
their solutions [3]. Such technology not only makes the subject matter more accessible but
also aligns with modern educational practices that emphasize interactive and student-
centered learning.

3. Integration of Python Tools in Educational Settings
The integration of Python-based tools into the mathematics curriculum offers two-

fold benefits. Firstly, it provides a straightforward means for students to engage with com-
plex polynomial equations in a controlled, error-forgiving environment. Secondly, it ena-
bles educators to focus on teaching the underlying principles and applications of polyno-
mial functions rather than the mechanical process of solving them, thus saving valuable
instructional time and enhancing the overall learning experience [3]. This approach not
only aids in demystifying advanced mathematical topics but also aligns with contempo-
rary educational goals of fostering computational thinking — a skill increasingly recog-
nized as essential in the digital age.

4. Polynomial Root-Finding Algorithm
In the field of numerical analysis, the problem of finding roots of polynomial func-

tions is of significant importance due to its widespread applications across various scien-
tific disciplines. This document outlines an algorithm implemented in Python, designed
to find roots of a polynomial defined by user-inputted coefficients and powers. The pro-
cedure (as shown in Figure 1) efficiently combines user interaction, validation, and nu-
merical methods to facilitate the calculation of polynomial roots.

https://pinnaclepubs.com/index.php/PAPPS

Pinnacle Academic Press Proceedings Series https://pinnaclepubs.com/index.php/PAPPS

Vol. 1 (2025) 3

Figure 1. The Procedure of Coding Design.

4.1. Algorithm Description
4.1.1. Step 1: User Input for Polynomial Terms

The algorithm initiates by requesting the user to specify the number of terms in the
polynomial, with a limit of 10 terms to ensure manageable complexity. This limitation
ensures manageability while maintaining the flexibility to handle a variety of polynomial
forms. The number of terms is crucial as it dictates the subsequent input requirements and
the complexity of the polynomial being evaluated.

num_terms = int (input ("Enter the number of terms (up to 10): "))
The validity of the entered number of terms is checked immediately. If the input falls

outside the acceptable range (1 to 10), the algorithm provides a feedback message and
prompts the user to re-enter the correct input.

4.1.2. Step 2: Capturing Polynomial Powers and Coefficients
The user is then asked to enter the powers for each term of the polynomial. These

powers must be non-negative integers and entered in descending order, a requirement
that is essential for the correct formulation of the polynomial equation. This step is critical
as it defines the structure of the polynomial function.

powers = []
print ("Enter the powers of each term (separated by spaces):")
powers_input = input (). split ()
After collecting the powers, a similar process is followed, where the user is prompted

to input the coefficients for each term. These coefficients are real numbers, which influence
the polynomial’s behavior and its root locations. Both powers and coefficients are vali-
dated for their length and type to ensure they match the expected format and values.

4.1.3. Step 3: Polynomial Construction and Root Calculation
Once the input data are validated and accepted, the algorithm constructs the polyno-

mial function. This construction involves creating a list where the index represents the
power of x, and the value at that index represents the coefficient corresponding to that
power.

The roots of the polynomial are calculated using Newton’s method, a powerful tech-
nique for approximating the roots (or zeroes) of a real-valued function.

Newton’s method is applied iteratively to find roots, starting from an initial guess
provided by the user or generated by the algorithm. For each term in the polynomial, the
algorithm attempts to find a root through a series of iterations, refining the guess based
on the function’s derivative.

https://pinnaclepubs.com/index.php/PAPPS

Pinnacle Academic Press Proceedings Series https://pinnaclepubs.com/index.php/PAPPS

Vol. 1 (2025) 4

4.1.1. Output
The algorithm outputs the roots of the polynomial, each rounded to two decimal

places for precision. This output is the culmination of the root-finding process and pro-
vides the user with the specific points where the polynomial function intersects the x-axis.

This Python-based root-finding algorithm for polynomials is notable for its user-
friendly approach, robust validation, and efficient numerical technique. By allowing users
to define the polynomial dynamically and applying Newton’s method, it offers a practical
and educational tool suitable for academic purposes and practical applications in fields
requiring polynomial root solutions.

5. A Four-Term Example for Solving Quadratic Polynomials
To effectively utilize the Python-based polynomial root-finding tool highlighted in

our research, users initiate the process by running the get_polynomial_roots function
within a Python environment. This begins with the program asking users to specify the
number of terms for the polynomial, which is capped at ten.

As shown in Figure 2, inputting 4 indicates that the polynomial will consist of four
terms. Users then provide the powers for each term in descending order, for example,
three, two, one, and zero, outlining the structure of the polynomial. Following this, users
are prompted to enter the coefficients corresponding to these powers. In the given exam-
ple, these coefficients would be four, two, three, and negative five, which completes the
construction of the polynomial equation. The algorithm constructs this polynomial and
utilizes Newton’s method to calculate the roots, displaying outputs such as zero point
seventy-five repeated four times, reflecting the calculated roots with precision generally
rounded to two decimal places. It is crucial for users to ensure the numbers of powers and
coefficients match accurately and that all inputs conform to the required formats and data
types. This method provides an efficient solution to finding roots while enhancing the
user’s understanding of polynomial structures and computational solving techniques,
serving as an educational tool that bridges theoretical concepts with practical application
in mathematical learning.

Figure 2. An example of using the code.

6. Discussion
The integration of Python-based computational tools in secondary mathematics ed-

ucation enhances student engagement with polynomial functions. Recent advancements
in numerical methods have transformed educational paradigms, as demonstrated by Duff,
Leykin, and Rodriguez, who highlight the flexibility of Python for personalized learning
[3]. Bates et al. emphasize the importance of numerical software, noting its accessibility
and ability to handle complex computations essential for understanding polynomials [4].
Santamaría and Woodroofe further illustrate how computational tools simplify complex
algebraic structures through interactive modules [5]. Additionally, Breiding and Timme

https://pinnaclepubs.com/index.php/PAPPS

Pinnacle Academic Press Proceedings Series https://pinnaclepubs.com/index.php/PAPPS

Vol. 1 (2025) 5

discuss how programming environments like Julia are becoming integral to teaching ad-
vanced mathematics, fostering deeper mathematical understanding [6]. However, the
over-reliance on technology raises concerns about students neglecting traditional prob-
lem-solving skills, as noted by Blum et al., and the risk of undermining rigorous mathe-
matical thinking if students do not understand the underlying algorithms [7-9]. In conclu-
sion, while Python-based tools enhance learning, balancing them with traditional meth-
ods.

7. Conclusion
The integration of Python-based computational tools into the teaching of polynomial

functions in secondary education represents a transformative advancement in mathemat-
ical pedagogy. By streamlining complex problem-solving processes, these tools not only
facilitate a deeper understanding of polynomial functions but also enhance student en-
gagement through interactive learning environments. The ability to immediately compute
and verify solutions allows students to explore mathematical concepts dynamically, rein-
forcing theoretical knowledge through practical application. This approach has proven to
be invaluable in bridging the gap between abstract mathematical theories and their prac-
tical implications, making learning more accessible and enjoyable for students.

Furthermore, these tools offer a gateway to computational thinking—a skill increas-
ingly necessary in modern education and the workforce. Students exposed to Python gain
a dual advantage: they not only master the mathematical content but also develop coding
proficiency and logical reasoning skills. This interdisciplinary learning supports long-
term academic and career readiness, especially in STEM-related fields.

However, the adoption of computational tools should not replace traditional teach-
ing methods entirely. It is crucial to maintain a balance where students develop a solid
understanding of underlying mathematical principles without becoming overly reliant on
automation. Educators must be trained to integrate these tools thoughtfully, ensuring that
technology complements rather than overshadows fundamental skills.

Looking ahead, the continued refinement of educational technology and its integra-
tion into curricula offers exciting possibilities for reshaping mathematics education. Fu-
ture research should explore long-term outcomes of such pedagogical approaches, includ-
ing how they affect student performance, confidence, and interest in mathematics. Ulti-
mately, the use of Python-based tools in polynomial function instruction highlights a
broader shift toward a more dynamic, interactive, and inclusive learning experience, one
that prepares students not just to solve equations, but to think critically and creatively in
a digitally evolving world.

References
1. M. Živković, S. Pellizzoni, I. C. Mammarella, and M. C. Passolunghi, “Executive functions, math anxiety and math performance

in middle school students,” Br. J. Dev. Psychol., vol. 40, no. 3, pp. 438–452, 2022, doi: 10.1111/bjdp.12412.
2. S. B. Belhaouari, M. H. F. Hijab, and Z. Oflaz, “Matrix approach to solve polynomial equations,” Results Appl. Math., vol. 18, p.

100368, 2023, doi: 10.1016/j.rinam.2023.100368.
3. T. Duff, A. Leykin, and J. I. Rodriguez, “U-generation: Solving systems of polynomials equation-by-equation,” Numer. Algo-

rithms, vol. 95, no. 2, pp. 813–838, 2024, doi: 10.1007/s11075-023-01590-1.
4. D. J. Bates, A. J. Sommese, J. D. Hauenstein, and C. W. Wampler, Numerically Solving Polynomial Systems with Bertini, Philadel-

phia, PA, USA: SIAM, 2013. ISBN: 9781611972696.
5. A. Santamaría-Galvis and R. Woodroofe, “Shellings from relative shellings, with an application to NP-completeness,” Discrete

Comput. Geom., vol. 66, no. 2, pp. 792–807, 2021, doi: 10.1007/s00454-020-00273-1.
6. P. Breiding and S. Timme, “HomotopyContinuation.jl: A package for homotopy continuation in Julia,” in Mathematical Soft-

ware—ICMS 2018: Proc. 6th Int. Conf., South Bend, IN, USA, Jul. 24–27, 2018, pp. 458–465, Springer. ISBN: 9780387982816.
7. L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and Real Computation, New York, NY, USA: Springer, 2012, doi:

10.1007/978-1-4612-0701-6.

https://pinnaclepubs.com/index.php/PAPPS
http://doi.org/10.1111/bjdp.12412
http://doi.org/10.1016/j.rinam.2023.100368
http://doi.org/10.1007/s11075-023-01590-1
http://doi.org/10.1007/s00454-020-00273-1
http://doi.org/10.1007/978-1-4612-0701-6

Pinnacle Academic Press Proceedings Series https://pinnaclepubs.com/index.php/PAPPS

Vol. 1 (2025) 6

8. J. Pérez, E. Dapena, J. Aguilar, and G. Carrillo, “Reinforcement learning for estimating student proficiency in math word prob-
lems,” in Proc. 2022 XVII Latin Amer. Conf. Learn. Technol. (LACLO), Oct. 2022, pp. 01–06, IEEE, doi: 10.1109/LA-
CLO56648.2022.10013399.

9. A. N. Jensen, “Tropical homotopy continuation,” arXiv preprint arXiv:1601.02818, 2016, doi: 10.48550/arXiv.1601.02818.

Disclaimer/Publisher’s Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s)
and contributor(s) and do not necessarily reflect the views of PAP and/or the editor(s). PAP and/or the editor(s) disclaim any respon-
sibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in
the content.

https://pinnaclepubs.com/index.php/PAPPS
http://doi.org/10.1109/LACLO56648.2022.10013399
http://doi.org/10.1109/LACLO56648.2022.10013399
http://doi.org/10.48550/arXiv.1601.02818

	1. Introduction
	2. Innovations in Teaching Polynomial Functions: Python-Based Solutions
	3. Integration of Python Tools in Educational Settings
	4. Polynomial Root-Finding Algorithm
	4.1. Algorithm Description
	4.1.1. Step 1: User Input for Polynomial Terms
	4.1.2. Step 2: Capturing Polynomial Powers and Coefficients
	4.1.3. Step 3: Polynomial Construction and Root Calculation
	4.1.1. Output

	5. A Four-Term Example for Solving Quadratic Polynomials
	6. Discussion
	7. Conclusion
	References

