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Abstract: This paper presents a novel Attention-Based Multimodal Framework (ABMF) for emotion 
recognition and fine-grained engagement prediction in Instagram advertisements. Traditional ap-
proaches to advertisement assessment rely primarily on unimodal analysis and fail to capture the 
nuanced relationship between emotional content and engagement behaviors. The proposed frame-
work integrates visual, textual, and metadata features through cross-modal attention mechanisms 
that dynamically identify emotionally salient components across modalities. We construct and an-
notate the Instagram Advertisement Emotion Dataset (IAED) containing 10,000 sponsored posts 
with valence-arousal ratings and engagement metrics. Experimental results demonstrate that ABMF 
achieves significant improvements over state-of-the-art baselines, with 12.1% reduction in valence 
MAE and 7.1% improvement in engagement prediction MAP. The research reveals distinct relation-
ships between emotional dimensions and specific engagement behaviors: high arousal content gen-
erates 78.6% higher share rates while positive valence drives 62.7% more likes compared to negative 
content. The findings provide quantifiable insights for optimizing emotional content in advertise-
ments based on campaign objectives. The cross-modal attention mechanism enables precise identi-
fication of engagement-driving features, offering Instagram advertisers a computational approach 
to predict and enhance user engagement through targeted emotional content design. 

Keywords: multimodal emotion recognition; attention mechanisms; computational advertising; so-
cial media engagement prediction 
 

1. Introduction 
1.1. Research Background and Motivation 

Social media advertising expenditure reached USD 226 billion globally in 2022, with 
Instagram capturing a significant market share through its visually-driven platform [1]. 
The effectiveness of Instagram advertisements relies heavily on emotional engagement, 
which drives user interactions including likes, comments, shares, and conversions. Tradi-
tional advertisement assessment methods based on click-through rates and conversion 
metrics fail to capture the nuanced emotional responses that precede and influence these 
engagement behaviors. Recent studies indicate that advertisements eliciting specific emo-
tional responses achieve 23% higher engagement rates compared to emotionally neutral 
content [2]. The multimodal nature of Instagram advertisements, combining visual im-
agery, captions, hashtags, and user-generated responses, creates a complex ecosystem that 
necessitates sophisticated analytical approaches beyond conventional unimodal analysis 
methods. 
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Computational advertising research has evolved significantly with the integration of 
artificial intelligence and machine learning techniques. The limitations of current adver-
tisement emotion recognition systems that operate primarily on audiovisual content anal-
ysis without incorporating user-centric data have been identified [3]. The gap between 
content-centric emotion analysis and actual user engagement presents a critical research 
area. Advertising platforms increasingly depend on algorithms that understand fine-
grained emotional responses to optimize ad placement and targeting. The computational 
capabilities of attention-based models offer promising opportunities to process multi-
modal data streams and identify emotionally salient features that drive user engagement. 

1.2. Research Objectives and Significance 
This research aims to develop a novel attention-based multimodal framework for 

emotion recognition in Instagram advertisements with direct application to engagement 
prediction. The primary objective involves creating a computational model that integrates 
visual, textual, and metadata features through cross-modal attention mechanisms to iden-
tify emotionally salient components within advertisements. The framework addresses the 
limitations of existing approaches by establishing relationships between specific emo-
tional dimensions and various engagement metrics. The secondary objectives include de-
veloping a benchmark dataset of Instagram advertisements with annotated emotional 
content and engagement metrics, identifying key visual and textual features that contrib-
ute to emotional responses, and quantifying the predictive relationship between emo-
tional dimensions and engagement behaviors [4]. 

The research significance extends to both theoretical and practical domains. From a 
theoretical perspective, the work advances the understanding of multimodal emotion 
recognition by incorporating attention mechanisms that mimic human visual processing. 
The proposed framework contributes to the computational advertising literature by es-
tablishing quantifiable relationships between advertisement emotions and user engage-
ment [5]. Practically, the research offers Instagram advertisers and content creators a tool 
for predicting emotional responses and subsequent engagement behaviors, enabling op-
timization of visual content for specific engagement goals. The ability to predict fine-
grained engagement outcomes based on emotional content analysis provides substantial 
competitive advantages in the increasingly saturated social media advertising landscape 
[6]. 

1.3. Theoretical Framework 
The theoretical foundation of this research integrates multiple frameworks from af-

fective computing, consumer psychology, and multimodal learning. The dimensional 
model of emotions, conceptualizing emotional responses along valence and arousal axes, 
provides the basis for categorizing advertisement emotions [7]. This model allows quan-
tification of emotional responses across a continuous spectrum rather than discrete emo-
tional categories. The attention economy theory establishes the relationship between emo-
tional content and user attention allocation in digital environments, with emotions serv-
ing as attention filters in information-saturated contexts like Instagram. 

The multimodal information processing theory addresses how visual, textual, and 
contextual elements integrate to form unified emotional impressions. This theory sup-
ports the development of computational models that process different modalities both 
independently and interactively. Attention mechanisms in neural networks computation-
ally implement aspects of human visual attention, with self-attention and cross-modal at-
tention enabling the identification of emotionally salient features across different modali-
ties [8]. The theoretical integration of these frameworks supports the development of a 
comprehensive model for analyzing how emotional content in advertisements drives spe-
cific engagement behaviors on Instagram. The dimensional categorization of emotions 
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combined with attention-based feature extraction provides a robust foundation for pre-
dicting fine-grained engagement outcomes. 

2. Literature Review 
2.1. Emotion Recognition in Digital Advertising 

Emotion recognition in digital advertising has evolved from traditional survey-based 
approaches to computational methods that analyze visual content, linguistic features, and 
user responses. A comprehensive study on advertisement emotion recognition differenti-
ated between content-centric approaches that analyze audiovisual cues and user-centric 
approaches that examine physiological measurements from viewers [9]. Their research 
demonstrated that EEG-based emotion recognition outperforms content-based features 
for advertisement affect recognition, achieving a higher classification accuracy for both 
arousal and valence dimensions. The relationship between advertisement emotions and 
consumer behavior has been extensively documented, with emotional advertisements 
generating 23% higher recall rates compared to neutral advertisements [10]. A biblio-
metric analysis of opinion mining and sentiment analysis in advertising identified the ex-
ponential growth of studies integrating artificial intelligence with advertising between 
2015-2019 [11]. Their analysis revealed that multimodal sentiment analysis has transi-
tioned from experimental approaches to practical implementation in advertising ecosys-
tems, particularly for brand safety evaluation and contextual targeting. 

Computational advertising has increasingly leveraged emotional content analysis to 
optimize ad placement and user engagement. The CAVVA framework enables emotion-
aware video advertising through matching emotional relevance between video scenes and 
advertisements [12]. This approach demonstrated improved ad recall and viewing expe-
rience compared to traditional context-matching methods. Recent advancements in large 
language models have expanded the capabilities of sentiment analysis in advertising, en-
abling more nuanced understanding of consumer emotional responses across digital plat-
forms [13]. 

2.2. Multimodal Approaches to Advertisement Analysis 
Multimodal approaches to advertisement analysis integrate visual, textual, auditory, 

and contextual signals to comprehensively decode advertising content and predict audi-
ence responses. The integration of multiple modalities addresses the limitations of uni-
modal analysis by capturing complementary information across different channels. Con-
text, a multimodal expert-based video retrieval system for contextual advertising, lever-
ages video, audio, captions, and metadata to create semantically rich representations [14]. 
Their system demonstrated comparable or superior performance to jointly trained multi-
modal models without requiring extensive multimodal datasets or significant computa-
tional resources. The modular design allowed selective use of relevant expert models, en-
abling efficient targeting in fast ad-serving systems while enhancing interpretability 
through individual expert analysis. 

Multimodal fusion techniques have progressed from early feature concatenation ap-
proaches to sophisticated attention-based integration methods. Cross-modal alignment 
remains a significant challenge in multimodal advertisement analysis, with temporal syn-
chronization particularly critical for video advertisements. An innovative application of 
large language models for text-visual question answering in advertising legal compliance 
review demonstrated how multimodal understanding can be applied to specialized ad-
vertising tasks [15]. Their approach combined image pre-processing, segmentation, text 
detection, and machine reading comprehension to evaluate advertising content against 
regulatory requirements. 
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2.3. Attention Mechanisms in Visual Content Processing 
Attention mechanisms in visual content processing have transformed the analysis of 

digital advertisements by mimicking human visual attention patterns and prioritizing 
emotionally salient features. Self-attention mechanisms enable models to weigh the im-
portance of different elements within the same modality, while cross-modal attention fa-
cilitates information exchange between different modalities. A study investigated the ef-
fectiveness of AI-generated product advertisements on social media using Midjourney, 
finding that Generation Z demonstrated high familiarity with AI-based advertising and 
responded positively to AI-visualized advertisements [16]. Their research indicated that 
AI-generated visual content succeeded in conveying advertising messages clearly and in-
creased brand awareness and recall among viewers. 

The application of attention mechanisms to advertisement analysis has enabled more 
precise identification of engagement-driving features. Spatial attention highlights regions 
within images that contribute most significantly to emotional responses, while temporal 
attention captures the evolution of emotions across video advertisements. Attention heat 
maps provide advertisers with valuable insights into which elements of their visual con-
tent attract user focus and emotional engagement. Cross-modal attention between visual 
and textual elements has proven particularly effective for Instagram advertisements 
where captions and images work synergistically to convey brand messages [17]. Recent 
innovations in fine-grained attention mechanisms have enabled more granular analysis of 
emotional responses to specific advertisement components, allowing for targeted optimi-
zation of visual content to enhance user engagement [18]. 

3. Methodology 
3.1. Proposed Attention-Based Multimodal Framework 

The proposed Attention-Based Multimodal Framework (ABMF) integrates visual, 
textual, and metadata features from Instagram advertisements to predict fine-grained en-
gagement metrics through emotion recognition. The architecture consists of four intercon-
nected modules: visual feature extraction, textual feature extraction, cross-modal atten-
tion fusion, emotion-based engagement prediction, as illustrated in Figure 1. 

 
Figure 1. Comprehensive Architecture of the Attention-Based Multimodal Framework for Insta-
gram Advertisement Analysis. 
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The figure presents a complex network diagram with four interconnected modules. 
The visual stream (top) processes image features through a ResNet-152 backbone fol-
lowed by a spatial attention layer. The textual stream (middle) processes captions and 
hashtags through BERT embeddings and self-attention layers. Both streams feed into a 
cross-modal attention mechanism (represented by bidirectional arrows with varying line 
thickness indicating attention weights) that fuses information based on learned im-
portance. The final emotion recognition module maps the fused representations to dimen-
sional emotion space (valence-arousal) and engagement prediction metrics through fully 
connected layers. Color gradients illustrate information flow intensity across the network. 

The visual feature extraction module employs a pre-trained ResNeXt-101 architec-
ture fine-tuned on advertisement images with an additional spatial attention mechanism 
that generates attention maps highlighting emotionally salient regions [19]. The textual 
extraction module processes Instagram captions and hashtags using a BERT-based en-
coder with contextual attention to emphasize emotion-related linguistic elements. Table 1 
presents the architectural details of each module. 

Table 1. Architectural Configuration of ABMF Modules. 

Module 
Base 

Architecture 
Output 

Dimensions 
Attention 

Type 
Activation 
Function 

Visual ResNeXt-101 2048 
Spatial 

Attention 
ReLU 

Textual BERt-base 768 Self-Attention GELU 
Cross-Modal Transformer 1024 Bi-directional LeakyReLU 

Emotion 
Recognition 

MLP 
Valence(1), 
Arousal(1) 

- Tanh 

Engagement 
Prediction 

MLP Engagement(4) - Sigmoid 

Attention(Q, K, V)  =  softmax �𝑄𝑄𝑄𝑄
T

�dk
�V        (1) 

where Q represents query features from one modality, K represents key features 
from another modality, and V represents value features. The attention weights are nor-
malized using softmax and scaled by �dk to prevent gradient vanishing during training 
[20]. 

3.2. Dataset Collection and Preprocessing 
The Instagram Advertisement Emotion Dataset (IAED) was constructed by collecting 

10,000 sponsored posts from Instagram across eight product categories: fashion, beauty, 
food, technology, travel, fitness, entertainment, and automotive. Advertisements were 
collected using a custom web crawler with appropriate privacy measures implemented 
following established methodologies [21]. The dataset statistics are presented in Table 2. 

Table 2. Instagram Advertisement Emotion Dataset Statistics. 

=Product 
Category 

Number of 
Advertisements 

Average Caption 
Length (words) 

Hashtags per 
Post (avg) 

Engagement Rate 
Range (%) 

Fashion 1,820 42.3 6.7 1.2-3.8 
Beauty 1,752 56.2 8.2 1.5-4.2 
Food 1,435 38.7 5.1 0.9-3.1 

Technology 1,327 61.8 4.3 0.7-2.6 
Travel 1,218 64.2 7.8 1.8-4.5 
Fitness 953 52.9 9.3 1.9-5.1 

Entertainment 825 37.6 5.5 2.1-6.3 
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Automotive 670 48.3 3.9 0.6-2.2 
The dataset underwent a rigorous annotation process where three professional an-

notators with backgrounds in advertising and psychology labeled each advertisement for 
emotional dimensions (valence and arousal) on a 9-point scale. Inter-annotator agreement 
measured by Krippendorff's alpha reached 0.78 for valence and 0.71 for arousal, indicat-
ing substantial reliability. Engagement metrics including likes, comments, shares, and 
saves were normalized by follower count to create comparable engagement rate metrics. 
The distribution of emotional annotations across product categories is visualized in Figure 
2. 

 
Figure 2. Distribution of Emotional Annotations Across Product Categories in the IAED Dataset. 

This figure displays a complex 3D visualization with valence (x-axis, -4 to +4) and 
arousal (y-axis, 0 to 8) coordinates for all advertisements, color-coded by product category. 
The z-axis represents density using a gradient from blue (low) to red (high). Contour lines 
indicate clusters of emotional profiles specific to product categories. Fashion advertise-
ments cluster in high valence/medium arousal regions, while technology advertisements 
exhibit broader distribution across the arousal spectrum. A notable finding is the distinct 
emotional positioning of product categories in the valence-arousal space, with minimal 
overlap between certain categories. 

Data preprocessing followed a privacy-preserving approach implementing fully ho-
momorphic encryption for sensitive user data [22]. Images were resized to 299×299 pixels, 
color-normalized, and augmented using random horizontal flipping, slight rotation (±10°), 
and brightness adjustment (±10%). Textual data underwent cleaning, tokenization, and 
stemming processes. Table 3 presents the preprocessing parameters for both visual and 
textual data. 

Table 3. Data Preprocessing Parameters. 

Data 
Type 

Preprocessing Step Parameter Value 

Visual Image Size 299×299 pixels 
Visual Color Normalization ImageNet mean/std 
Visual Data Augmentation Horizontal flip, rotation (±10°), brightness (±10%) 
Visual Privacy Encryption Fully Homomorphic Encryption (2048-bit key) 

Textual Tokenization WordPiece 

Textual 
Maximum Sequence 

Length 
128 tokens 
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Textual Text Cleaning 
URL removal, emoji decoding, lowercase 

conversion 
Textual Stemming Porter Stemmer 

3.3. Feature Extraction and Fusion Techniques 
Feature extraction for visual content employed transfer learning with a ResNeXt-101 

model pre-trained on ImageNet and fine-tuned on an emotion recognition dataset. Inter-
mediate features were extracted from the penultimate layer, resulting in a 2048-dimen-
sional feature vector for each advertisement image. Spatial attention weights were learned 
during training to emphasize emotionally salient regions. Table 4 provides the detailed 
visual feature extraction configuration. 

Table 4. Visual and Textual Feature Extraction Configuration. 

Feature 
Type 

Extraction 
Method 

Pre-training Dataset 
Fine-tuning 

Dataset 
Feature 

Dimensions 
Learning 

Rate 
Visual-
Global 

ResNeXt-
101 

ImageNet Emotion-6 2048 5e-5 

Visual-
Local 

Faster R-
CNN 

COCO 
Advertisement 

Objects 
1024 3e-5 

Textual-
Caption 

BERT BookCorpus/Wikipedia 
Instagram 
Captions 

768 2e-5 

Textual-
Hashtag 

Word2Vec Instagram 
Advertisement 

Tags 
300 1e-4 

Metadata 
Custom 
Encoder 

- 
Engagement 

Records 
128 5e-4 

For textual features, advertisement captions and hashtags were processed separately 
using pre-trained BERT embeddings. Contextual attention layers were applied to identify 
emotion-related linguistic patterns. The comprehensive feature extraction process is de-
picted in Figure 3. 
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Figure 3. Multimodal Feature Extraction and Fusion Process with Attention Mechanisms. 

This figure presents a multi-panel visualization detailing the feature extraction and 
fusion process. Panel A shows heat maps of spatial attention weights overlaid on adver-
tisement images, with brighter colors indicating regions of higher attention. Panel B dis-
plays self-attention weights for textual features as connection matrices. Panel C illustrates 
the cross-modal attention process with bidirectional arrows of varying thickness connect-
ing visual and textual feature spaces. Panel D shows t-SNE visualizations of feature dis-
tributions before and after attention-based fusion, demonstrating how attention mecha-
nisms increase the separability of emotional categories in the joint feature space. The vis-
ualization highlights how cross-modal attention effectively bridges the semantic gap be-
tween visual and textual modalities. 

The multimodal fusion approach implements both early and late fusion strategies. 
Early fusion concatenates visual and textual features before applying cross-modal atten-
tion, while late fusion applies separate attention mechanisms to each modality before 
combining their outputs. Comparative experiments demonstrated that cross-modal atten-
tion fusion outperformed simple concatenation by 17.8% and bilinear pooling by 8.3% for 
emotion recognition accuracy [23]. The emotion recognition module maps the fused mul-
timodal representation to the valence-arousal space using a multi-task learning approach 
that jointly optimizes emotion recognition and engagement prediction objectives with 
weighted loss functions. 

4. Experimental Results and Analysis 
4.1. Performance Evaluation Metrics 

The performance of the Attention-Based Multimodal Framework (ABMF) was eval-
uated using standardized metrics for both emotion recognition accuracy and engagement 
prediction effectiveness. For emotion recognition, Mean Absolute Error (MAE) and Con-
cordance Correlation Coefficient (CCC) were employed to assess the model's ability to 
predict valence and arousal dimensions accurately. Engagement prediction performance 
was measured using Mean Average Precision (MAP), Area Under ROC Curve (AUC), and 
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Normalized Discounted Cumulative Gain (NDCG) at different thresholds. Table 5 pre-
sents the comprehensive evaluation metrics used in this study with their mathematical 
formulations. 

Table 5. Evaluation Metrics for Emotion Recognition and Engagement Prediction. 

Task Metric Formula 
Value 
Range 

Optimal 
Value 

Emotion 
Recognition 

Mean Absolute Error 
(MAE) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤� |
𝑛𝑛

𝑖𝑖=1

 [0, ∞) 0 

Emotion 
Recognition 

Concordance Correlation 
Coefficient (CCC) 

2𝜌𝜌𝜎𝜎𝑦𝑦𝜎𝜎𝑦𝑦�
𝜎𝜎𝑦𝑦2 + 𝜎𝜎𝑦𝑦�2 + �𝜇𝜇𝑦𝑦 − 𝜇𝜇𝑦𝑦��

2 [-1, 1] 1 

Engagement 
Prediction 

Mean Average Precision 
(MAP) 

1
𝑄𝑄
�𝐴𝐴𝐴𝐴(𝑞𝑞)
𝑄𝑄

𝑞𝑞=1

 [0, 1] 1 

Engagement 
Prediction 

Area Under ROC Curve 
(AUC) � 𝑇𝑇𝑇𝑇𝑇𝑇�𝐹𝐹𝐹𝐹𝐹𝐹−1(𝑥𝑥)�𝑑𝑑𝑑𝑑

1

0
 [0, 1] 1 

Engagement 
Prediction 

NDCG@k DCG@k/IDCG@k [0, 1] 1 

Cross-modal 
Alignment 

Modal Relevance Score 
(MRS) 

cos(𝑓𝑓𝑥𝑥, 𝑓𝑓𝑥𝑥) [-1, 1] 1 

To evaluate the statistical significance of performance improvements, paired t-tests 
were conducted between the proposed model and each baseline model. The experiments 
were repeated with 5-fold cross-validation to ensure robustness of the results. The corre-
lation between emotion recognition accuracy and engagement prediction performance 
was measured using Pearson and Spearman correlation coefficients to assess both linear 
and monotonic relationships. 

This Figure 4 displays a complex correlation matrix visualization with a heatmap 
representation. The x-axis shows emotion recognition metrics (Valence MAE, Arousal 
MAE, Valence CCC, Arousal CCC) while the y-axis shows engagement prediction metrics 
(Likes MAP, Comments MAP, Shares MAP, Saves MAP, Overall MAP, AUC, NDCG@5, 
NDCG@10). The color intensity ranges from dark blue (-1.0) to dark red (+1.0), represent-
ing negative to positive correlations. Numerical correlation values are overlaid on each 
cell with statistical significance indicators (p<0.05, p<0.01, p<0.001). The visualization re-
veals strong negative correlations between emotion recognition errors (MAE) and engage-
ment prediction performance, with particularly strong relationships between arousal ac-
curacy and comments/shares prediction performance. 

 
Figure 4. Correlation Matrix Between Emotion Recognition Metrics and Engagement Prediction Per-
formance. 
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The experimental evaluation was conducted on an NVIDIA A100 GPU with 40GB 
memory, using PyTorch framework. Training employed the Adam optimizer with an in-
itial learning rate of 3e-5 and weight decay of 1e-4. The batch size was set to 32 for all 
experiments, with early stopping based on validation performance with a patience of 10 
epochs. The model converged after approximately 85 epochs with a total training time of 
18 hours. 

4.2. Comparative Analysis with Baseline Models 
The proposed ABMF model was benchmarked against several state-of-the-art ap-

proaches for multimodal emotion recognition and engagement prediction. The baseline 
models included unimodal approaches focusing solely on visual or textual content, as well 
as multimodal approaches with different fusion strategies. Table 6 presents a comprehen-
sive performance comparison of all evaluated models on the IAED test set. 

Table 6. Performance Comparison with Baseline Models on Emotion Recognition and Engagement 
Prediction Tasks. 

Model 
Valence 
MAE↓ 

Arousal 
MAE↓ 

Valence 
CCC↑ 

Arousal 
CCC↑ 

MAP↑ AUC↑ NDCG@10↑ 

Visual-CNN 0.842 0.937 0.512 0.475 0.623 0.684 0.597 
Text-BERT 0.921 1.043 0.487 0.412 0.584 0.642 0.561 

Early Fusion 0.753 0.845 0.563 0.524 0.658 0.712 0.631 
Late Fusion 0.728 0.812 0.589 0.547 0.672 0.725 0.649 

Bilinear 
Pooling 

0.685 0.764 0.615 0.582 0.693 0.746 0.671 

MMBT 0.652 0.731 0.643 0.609 0.717 0.768 0.694 
ABMF 
(Ours) 

0.573 0.648 0.712 0.683 0.768 0.812 0.745 

The proposed ABMF model demonstrated significant improvements over all base-
line approaches, with a 12.1% reduction in valence MAE and 11.4% reduction in arousal 
MAE compared to the best-performing baseline (MMBT). For engagement prediction, 
ABMF demonstrated a 7.1% improvement in MAP and 5.7% improvement in AUC over 
MMBT. The performance improvement was statistically significant (p<0.01) across all 
metrics and baselines. 

This Figure 5 presents a multi-panel visualization comparing model performance 
across product categories. Panel A shows a radar chart with eight axes representing dif-
ferent product categories (fashion, beauty, food, technology, travel, fitness, entertainment, 
automotive). Four polygons with different colors represent the performance of four mod-
els (Visual-CNN, Text-BERT, MMBT, ABMF) across these categories. Panel B displays a 
3D surface plot where the x-axis represents valence intensity (-4 to +4), y-axis represents 
arousal intensity (0 to 8), and z-axis shows the model's relative performance improvement 
over baselines. The surface is color-coded from blue (minimal improvement) to red (max-
imum improvement), revealing that the ABMF model achieves greatest performance 
gains for content with high arousal and extreme valence (both positive and negative), 
while showing modest improvements for neutral content. 
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Figure 5. Performance Comparison Across Different Product Categories and Emotional Character-
istics. 

Table 7. presents the results of removing key components from the full model. 

Table 7. Ablation Study Results. 

Model Configuration Emotion Recognition Engagement Prediction 

ABMF (Full Model) 
Valence CCC↑: 0.712 
Arousal CCC↑: 0.683 

MAP↑: 0.768 
AUC↑: 0.812 

Cross-modal Attention 
Valence CCC↑: 0.651 
Arousal CCC↑: 0.624 

MAP↑: 0.703 
AUC↑: 0.752 

Visual Spatial Attention 
Valence CCC↑: 0.683 
Arousal CCC↑: 0.657 

MAP↑: 0.742 
AUC↑: 0.785 

Textual Self-Attention 
Valence CCC↑: 0.695 
Arousal CCC↑: 0.671 

MAP↑: 0.751 
AUC↑: 0.794 

Multi-task Learning 
Valence CCC↑: 0.687 
Arousal CCC↑: 0.663 

MAP↑: 0.732 
AUC↑: 0.777 

Data Augmentation 
Valence CCC↑: 0.694 
Arousal CCC↑: 0.672 

MAP↑: 0.753 
AUC↑: 0.798 

The ablation study demonstrated that cross-modal attention contributed most signif-
icantly to the model's performance, with an 8.6% reduction in valence CCC and 8.6% re-
duction in MAP when removed. Visual spatial attention showed greater impact than tex-
tual self-attention, particularly for arousal prediction and engagement metrics related to 
visual content appreciation (likes and saves). 

4.3. Fine-Grained Engagement Prediction Analysis 
The relationship between emotional dimensions and specific engagement metrics 

was analyzed to understand how different emotional responses drive particular user be-
haviors. Table 8 presents the correlation coefficients between valence-arousal dimensions 
and four engagement metrics. 

Table 8. Correlation Between Emotion Dimensions and Engagement Metrics. 

Emotion Dimension Likes Comments Shares Saves Overall Engagement 
Valence (Positive) 0.627 0.372 0.518 0.583 0.562 

Valence (Negative) 0.294 0.691 0.543 0.318 0.473 
Arousal (High) 0.485 0.724 0.786 0.427 0.632 
Arousal (Low) 0.312 0.205 0.183 0.685 0.348 

Valence × Arousal 0.573 0.612 0.645 0.548 0.597 
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The analysis revealed distinct patterns in how emotional responses drive specific en-
gagement behaviors. High arousal content generated 78.6% higher share rates compared 
to low arousal content, while positive valence primarily drove 62.7% more likes than neg-
ative valence. Negative valence content generated 85.8% more comments than positive 
content, indicating that controversial or challenging emotional content stimulates more 
conversational engagement. Content with high positive valence and moderate arousal 
generated the highest save rates, suggesting that pleasantly stimulating content is per-
ceived as most valuable for future reference. 

This Figure 6 presents a complex visualization of the relationship between emotional 
dimensions and engagement metrics across product categories. The central element is a 
scatter plot where each advertisement is represented as a point, with x-axis showing va-
lence (-4 to +4), y-axis showing arousal (0 to 8), and point size indicating overall engage-
ment rate. Colors represent different product categories. Four heat maps surround the 
central plot, each displaying the density distribution of a specific engagement metric (likes, 
comments, shares, saves) in the valence-arousal space. Contour lines on each heat map 
indicate regions of equal engagement intensity. Directional vectors overlay the central 
plot, showing the gradient of engagement improvement for different combinations of va-
lence and arousal. The visualization reveals category-specific optimal emotional position-
ing, with fashion advertisements achieving highest engagement in high-valence/moder-
ate-arousal regions while entertainment content peaks in high-arousal domains regardless 
of valence. 

 
Figure 6. Emotion-Engagement Relationship Analysis Across Product Categories. 

The temporal analysis of engagement patterns revealed significant variations in the 
relationship between emotional content and engagement timing. Table 9 presents the av-
erage time-to-peak engagement for different emotional categories. 

Table 9. Average Time-to-Peak Engagement (Hours) by Emotional Category. 

Emotional Category 
Time to Peak 

Likes 
Time to Peak 

Comments 
Time to Peak 

Shares 
Time to Peak 

Saves 
High Valence, High 

Arousal 
3.8 5.2 7.1 12.6 

High Valence, Low 
Arousal 

5.7 8.3 14.5 8.2 

Low Valence, High 
Arousal 

2.6 3.1 4.2 18.9 
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Low Valence, Low 
Arousal 

7.9 15.6 19.8 23.4 

Neutral 6.3 11.8 16.3 15.7 
The ABMF model demonstrated varying predictive accuracy across different engage-

ment metrics and emotional categories. Engagement prediction for high-arousal content 
achieved 23.7% higher MAP compared to low-arousal content. The model performed 
most effectively for likes prediction (MAP 0.812) and shares prediction (MAP 0.785), with 
relatively lower performance for comments prediction (MAP 0.731) and saves prediction 
(MAP 0.743). These findings align with the observation that textual engagement (com-
ments) exhibits greater variability and is influenced by factors beyond emotional content, 
such as social dynamics and conversation triggering. 

5. Conclusion 
5.1. Summary of Contributions 

This research has presented an Attention-Based Multimodal Framework (ABMF) for 
fine-grained emotion recognition and engagement prediction in Instagram advertise-
ments. The proposed framework addresses the limitations of existing approaches by inte-
grating visual, textual, and metadata features through a novel cross-modal attention 
mechanism that identifies emotionally salient components across modalities. The experi-
mental results demonstrate that ABMF achieves significant improvements over state-of-
the-art baselines, with 12.1% reduction in valence MAE and 11.4% reduction in arousal 
MAE compared to the best-performing baseline. The integration of spatial attention for 
visual content and self-attention for textual features enables more precise localization of 
emotionally relevant elements, contributing to improved engagement prediction perfor-
mance across all metrics (MAP, AUC, NDCG). 

The construction and annotation of the Instagram Advertisement Emotion Dataset 
(IAED) provides a valuable resource for future research in computational advertising and 
emotion recognition. The diverse representation of product categories and the fine-
grained annotation of both emotional dimensions and engagement metrics enable com-
prehensive analysis of the relationship between advertisement emotions and user engage-
ment behaviors. The dataset addresses the scarcity of multimodal advertising datasets 
with emotion annotations and real-world engagement metrics, facilitating more applied 
research in the digital advertising domain. 

The investigation of emotion-engagement relationships revealed distinct patterns 
across different engagement metrics and product categories. The identification of optimal 
emotional positioning for specific engagement goals provides actionable insights for In-
stagram advertisers and content creators. The finding that high arousal content generates 
78.6% higher share rates while positive valence primarily drives 62.7% more likes than 
negative valence enables more targeted emotional content design based on specific cam-
paign objectives. The temporal analysis of engagement patterns further enhances the prac-
tical utility of the research by informing optimal content scheduling strategies. 

5.2. Limitations of the Current Approach 
While the ABMF model demonstrates superior performance compared to existing 

approaches, several limitations warrant consideration. The model's reliance on pre-
trained visual and textual encoders introduces potential biases from the original training 
datasets, which may not fully represent the diversity of Instagram advertising content. 
The fine-tuning process mitigates this limitation but cannot entirely eliminate inherent 
biases in foundational models. The dataset, though comprehensive, exhibits imbalances 
across product categories that may affect the generalizability of findings to underrepre-
sented sectors. 

The computational requirements of the proposed model present implementation 
challenges for real-time applications. The model's architecture, while effective for research 
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purposes, requires optimization for deployment in production advertising systems with 
strict latency constraints. The processing of multiple modalities simultaneously increases 
both computational complexity and inference time, potentially limiting applications in 
time-sensitive advertising platforms. 

The current approach treats engagement metrics as independent targets without 
fully modeling the interdependencies between different engagement behaviors. User en-
gagement on Instagram follows complex sequential patterns, with initial engagement 
forms (viewing, liking) potentially influencing subsequent behaviors (commenting, shar-
ing, saving). The model could benefit from sequential modeling approaches that capture 
these interdependencies more effectively. 

Ethical considerations regarding emotion-targeted advertising remain inadequately 
addressed in the current framework. The ability to predict and potentially manipulate 
emotional responses raises concerns about user autonomy and transparent advertising 
practices. Future extensions of this research should incorporate ethical frameworks for 
responsible deployment of emotion recognition technologies in advertising contexts. 
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