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Abstract: Autonomous driving perception systems are confronted with substantial robustness chal-
lenges under diverse weather conditions, where sensor data distortion caused by rain, fog, snow, or 
intense illumination often leads to degraded performance in critical tasks such as object detection 
and semantic segmentation. Existing approaches predominantly depend on single-domain models 
trained under ideal environmental conditions, which suffer from poor generalization across 
weather domains due to inherent domain shifts. This study explores the application of multi-do-
main adaptation techniques to enhance perception stability by integrating heterogeneous sensor 
data, including RGB (Red, Green, Blue) images, LiDAR (Light Detection and Ranging) point clouds, 
and thermal imaging, while leveraging cross-domain feature alignment mechanisms. The proposed 
framework employs domain-specific encoders combined with adversarial learning to mitigate 
weather-induced domain gaps, alongside a multi-task learning objective that simultaneously opti-
mizes perception accuracy and domain invariance. Experimental validation demonstrates that the 
framework achieves superior performance compared to conventional single-domain and shallow 
adaptation models, with interpretability analyses revealing key weather-robust features such as 
thermal edge consistency and LiDAR (Light Detection and Ranging) point density patterns. Its abil-
ity to adapt to unseen weather conditions could enable reliable autonomous driving in complex 
real-world environments and reduce weather-related accidents. By bridging domain adaptation 
theory with automotive perception requirements, this work advances the translation of robust AI 
(Artificial Intelligence)-driven systems into practical autonomous driving applications. 

Keywords: multi-domain adaptation; autonomous driving perception; diverse weather conditions; 
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1. Introduction 
Autonomous driving perception systems serve as the foundational component for 

environmental understanding, enabling vehicles to interpret surrounding conditions and 
support critical decision-making processes such as obstacle avoidance, lane keeping, and 
trajectory planning. However, real-world driving environments are inherently dynamic, 
with diverse weather conditions, with diverse weather conditions including rain, fog, 
snow, and intense sunlight, posing significant challenges to perception robustness. These 
weather-related perturbations introduce substantial distortions in sensor data: rain drop-
lets scatter light and create motion blur in RGB images, fog reduces atmospheric visibility 
and degrades depth estimation accuracy, snowflakes occlude foreground objects and in-
troduce noise in LiDAR point clouds, while strong sunlight causes glare that washes out 
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critical features in visual data. Such distortions often lead to performance degradation in 
core perception tasks, including object detection, semantic segmentation, and pedestrian 
tracking, thereby increasing the risk of accidents in adverse weather [1]. 

Current autonomous driving perception methods predominantly rely on single-do-
main models trained under ideal or controlled weather conditions, which exhibit poor 
generalization across weather domains due to the "domain shift" phenomenon, “which is 
the distribution mismatch between training (source domain) and deployment (target do-
main) data. For instance, a model optimized for clear weather may experience a 30 to 50 
percent drop in detection accuracy when deployed in heavy rain, as it fails to recognize 
weather-induced variations in object appearance and sensor characteristics [2]. Existing 
solutions to address this issue fall into three categories, each with inherent limitations: 
data augmentation techniques, which simulate weather effects (e.g., adding rain streaks) 
during training, often fail to capture the complexity of real-world weather patterns and 
thus limit generalization; single-domain fine-tuning, which retrains models on weather-
specific datasets, requires massive annotated data for each weather type and lacks cross-
domain adaptability; and shallow domain adaptation methods (e.g., CORAL, DANN), 
which align low-level features but overlook the hierarchical nature of perception tasks, 
resulting in suboptimal performance when facing multiple weather domains [3]. 

The emergence of multi-domain adaptation, a subfield of transfer learning, offers a 
promising direction to enhance perception robustness by enabling models to learn invar-
iant features across multiple source domains (e.g., different weather conditions) and gen-
eralize to unseen target domains. By aligning feature distributions across weather do-
mains while preserving task-specific information, multi-domain adaptation can mitigate 
domain shift and improve performance in diverse environments. However, its application 
to autonomous driving perception under diverse weather conditions remains underex-
plored, with three key challenges: first, heterogeneous sensor data fusion, since RGB im-
ages, LiDAR point clouds, and thermal imaging each have distinct data structures and 
weather sensitivities, they require specialized alignment strategies; second, dynamic do-
main shifts, as weather intensity (e.g., light vs. heavy rain) varies continuously, demand-
ing adaptive mechanisms rather than static feature alignment; third, real-time inference 
constraints because automotive systems require perception results within milliseconds to 
support timely decision-making [4]. 

This study proposes a multi-domain adaptation framework for autonomous driving 
perception under diverse weather conditions, which integrates heterogeneous sensor data 
(RGB images, LiDAR point clouds, and thermal imaging) through domain-specific encod-
ers and cross-domain adversarial alignment mechanisms. The framework employs a 
multi-task learning objective that simultaneously optimizes perception accuracy (for ob-
ject detection and semantic segmentation) and domain invariance (to minimize weather-
induced distribution gaps), with novel regularization techniques to handle partial sensor 
failure (e.g., LiDAR malfunction in heavy snow). The goal is to enable robust perception 
across unseen weather conditions, reduce dependency on large weather-specific datasets, 
and meet real-time performance requirements for practical deployment. 

The remainder of this paper is structured as follows: Section 2 reviews related work 
on weather-aware perception and multi-domain adaptation; Section 3 details the pro-
posed framework, including data preprocessing, model architecture, and training proto-
cols; Section 4 presents experimental validation, including comparative results and abla-
tion studies, Section 5 discusses the framework’s contributions, limitations and practical 
implications, and Section 6 concludes with future research directions. By bridging multi-
domain adaptation theory with automotive perception needs, this work aims to advance 
the reliability of autonomous driving systems in complex real-world environments. 
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2. Related Works 
The development of weather-robust autonomous driving perception has evolved 

through four distinct methodological phases, as illustrated in Figure 1, each addressing 
increasingly complex challenges of domain shift under diverse weather conditions. 

Figure 1. the Evolution of Domain Adaptation Methods. 

2.1. Phase 1: Single-Modality Rule-Based Methods (Before 2018) 
Early efforts relied on handcrafted features and weather-specific heuristics, such as 

dehazing algorithms for foggy images or threshold-based Light Detection and Ranging 
(LiDAR) denoising. These methods achieved limited robustness: for example, a histogram 
equalization-based approach for foggy object detection reported 62 to 68 percent accuracy 
under light fog but dropped to below 50 percent in dense fog [5]. Such techniques failed 
to generalize across weather types due to their reliance on fixed rules rather than learned 
patterns. 

2.2. Phase 2: Single-Domain Deep Learning (2018 to 2021) 
The adoption of deep neural networks (DNNs) improved performance under ideal 

conditions, with models like Faster Region-Based Convolutional Neural Network (Faster 
R-CNN) and PointNet++ achieving over 90 percent mean Average Precision (mAP) in 
clear weather. However, their single-domain training paradigm led to severe degradation 
in adverse weather: a study on the nuScenes dataset showed that a state-of-the-art Con-
volutional Neural Network (CNN) for object detection experienced a 43 percent accuracy 
drop in heavy rain and 58 percent in snow. Light Detection and Ranging (LiDAR)-based 
models faced similar issues, with point cloud sparsity in fog reducing semantic segmen-
tation mean Intersection over Union (mIoU) by 35 percent [6]. 

2.3. Phase 3: Single-Pair Domain Adaptation (2021 to 2023) 
Initial domain adaptation methods focused on aligning two domains (e.g., clear to 

rain) using adversarial learning or metric-based alignment. For instance, a Domain-Ad-
versarial Neural Network (DANN) reduced the performance gap between clear and rainy 
conditions by 18 percent but failed to generalize to fog or snow [7]. Similarly, Correlation 
Alignment (CORAL) improved cross-weather segmentation by 12 percent but struggled 
with non-linear domain shifts [8]. These approaches, as summarized in Table 1, lacked 
scalability to multiple weather domains. 

Table 1. Performance Comparison of Single-Pair Domain Adaptation Methods Under Weather 
Shifts. 

Method Source 
Domain 

Target 
Domain 

mAP 
(Target) 

Domain Gap Reduction 
(%) 

DANN Clear Rain 68.2% 18.3 
CORAL Clear Fog 61.5% 12.1 

Contrastive 
Adaptation Clear Snow 65.7% 15.6 

2.4. Phase 4: Multi-Domain Adaptation (2023 to the Present) 
Recent work has extended to multi-domain settings, leveraging contrastive learning 

or meta-learning to align features across three or more weather types. A multi-source do-
main adaptation framework using shared-private feature disentanglement achieved 72 
percent mAP across rain, fog, and snow, outperforming single-pair methods by 15 percent. 
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However, these studies predominantly focus on Red, Green, Blue (RGB) images, neglect-
ing LiDAR or thermal data, and rarely address dynamic weather intensity variations (e.g., 
light vs. heavy rain). 

Figure 2. shows the distribution of recent studies (2020 to 2024) across these phases, 
revealing that only 19 percent of publications focus on multi-domain adaptation for 
weather-robust perception, and only 8 percent integrate heterogeneous sensors. This gap 
underscores the need for frameworks that unify multi-domain adaptation with cross-
modal sensor fusion to address the full complexity of real-world weather challenges. 

 
Figure 2. the Distribution of Recent Studies. 

3. Methodology 
The proposed multi-domain adaptation framework for weather-robust autonomous 

driving perception integrates heterogeneous sensor data through domain-specific feature 
extraction, cross-domain alignment, and multi-task optimization. Figure 3 illustrates the 
end-to-end pipeline, which addresses three core challenges: heterogeneous sensor fusion, 
dynamic weather-induced domain shifts, and real-time inference constraints. 

 
Figure 3. Framework Architecture. 

3.1. Data Acquisition and Preprocessing 
Datasets: The framework is validated on a combined dataset comprising three 

sources: (1) nuScenes Weather, which includes 1.4M frames across clear, rain, fog, and 
snow conditions with synchronized Red, Green, Blue (RGB) (1280×720), Light Detection 
and Ranging (LiDAR) (128 channels), and radar data; (2) WeatherNet, providing 800K 
annotated thermal images (640×512) under diverse weather; and (3) a custom-collected 
corpus of 200K frames captured in extreme conditions (e.g., heavy snow, sandstorms) us-
ing a roof-mounted sensor suite (ZED 2i camera, Velodyne Alpha Prime LiDAR, FLIR 
thermal camera). 
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Temporal alignment is performed via timestamp synchronization (with an error of 
±1ms) and spatial calibration using extrinsic matrices to map LiDAR points to RGB/ther-
mal image coordinates [8]. LiDAR point clouds are filtered using a statistical outlier re-
moval method: 

Point𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = {𝑝𝑝 ∈ Cloud|
1
𝑘𝑘
�‖
𝑘𝑘

𝑖𝑖=1

𝑝𝑝 − 𝑝𝑝𝑖𝑖‖ < 𝜃𝜃} (1) 

Where 𝑘𝑘=20 nearest neighbors and𝜃𝜃=0.5. 
Synthetic weather perturbations (e.g., rain streak injection, fog density adjustment) 

are generated using StyleGAN3 to expand training diversity, with 30% of augmented 
samples mimicking extreme conditions. Figure 4 shows the distribution of preprocessing 
steps by computational overhead, with LiDAR denoising and synthetic augmentation ac-
counting for 62% of total preprocessing time. 

 
Figure 4. Preprocessing Computational Overhead. 

3.2. Model Architecture 
The architecture comprises three key components: modality-specific encoders, cross-

domain alignment modules, and multi-task prediction heads (Figure 3). 
RGB image is a modified ResNet-50 with weather-aware attention blocks (WABs) 

that suppress weather-induced noise (e.g., rain streaks) by emphasizing stable features 
(e.g., road edges). WABs use squeeze-excitation mechanisms to recalibrate channel 
weights based on local variance [9]. 

LiDAR point clouds are processed by a spatio-temporal Graph Neural Network 
(GNN) where nodes represent point clusters and edges encode spatial proximity. This 
captures density patterns invariant to weather (e.g., vehicle contours preserved in sparse 
fog) [10]. 

The thermal images are processed by a U-Net variant with skip connections to pre-
serve temperature gradients, which remain stable under low light or fog [11]. Table 2 sum-
marizes the encoder architectures and their key parameters. 

Table 2. Modality-Specific Encoder Parameters. 

Modality Backbone Input Size Params 
(M) 

Weather-Aware Modules 

RGB Images ResNet-50 + WABs 1280×720 25.6 4 squeeze-excitation blocks 
LiDAR Point 

Clouds 
GNN 100K 

points 
8.2 Spatio-temporal attention 

Thermal Images U-Net 640×512 12.1 Skip connections 

https://pinnaclepubs.com/index.php/PAPPS


Pinnacle Academic Press Proceedings Series https://pinnaclepubs.com/index.php/PAPPS 
 

Vol. 4 (2025) 253  

Adversarial domain discriminators consist of three discriminators (one per sensor) 
that distinguish features from source (seen weather) versus target (unseen weather) do-
mains. The adversarial loss minimizes domain discrepancy: 

ℒ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝔼𝔼𝑥𝑥∼𝑆𝑆[log𝐷𝐷 (𝑥𝑥)] + 𝔼𝔼𝑥𝑥∼𝑇𝑇[log( 1 − 𝐷𝐷(𝑥𝑥))] (2) 
Where 𝑆𝑆and 𝑇𝑇denote source and target domains. 
Cross-modal contrastive loss aligns features across sensors (e.g., RGB edges with Li-

DAR contours) using temperature-scaled cosine similarity: 

ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = − log
exp( sim(𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅,𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)/𝜏𝜏)
∑ exp(𝑘𝑘≠𝑖𝑖 sim(𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑘𝑘)/𝜏𝜏)

(3) 

with𝜏𝜏=0.07 to enhance inter-modal consistency. 

3.3. Training and Optimization 
The framework is trained end-to-end using a multi-task loss: 
ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝛽𝛽ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛾𝛾(ℒ𝑎𝑎𝑎𝑎𝑎𝑎 + ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (4) 

Whereℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(Focal Loss) andℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(Dice Loss) optimize perception tasks, and𝛼𝛼 =
0.4, 𝛽𝛽 = 0.3, 𝛾𝛾 = 0.3 (weighted via grid search). 

Training uses AdamW optimizer with gradient clipping (𝐿𝐿2norm ≤1.0) to prevent in-
stability. A curriculum learning strategy progresses from simple (clear to light rain) to 
complex (heavy snow to fog) domain shifts. 

4. Experiments 
To validate the efficacy of the proposed multi-domain adaptation framework, com-

prehensive experiments were conducted to assess its performance in weather-robust per-
ception tasks, including object detection and semantic segmentation. This section details 
the experimental setup, baseline comparisons, results analysis, and ablation studies, with 
key findings visualized in supporting figures and tables. 

4.1. Experimental Setup 
To ensure the generalizability of the proposed framework across diverse weather 

scenarios and sensor modalities, the evaluation was conducted on three benchmark da-
tasets, each selected to cover distinct environmental conditions and data types. First, 
nuScenes Weather served as a foundational multi-modal dataset, comprising 1.2 million 
annotated frames spanning six weather conditions — clear, light rain, heavy rain, fog, 
light snow, and heavy snow. It includes synchronized Red, Green, Blue (RGB) images, 
Light Detection and Ranging (LiDAR) point clouds, and radar data, providing a compre-
hensive basis for assessing cross-sensor robustness. Second, WeatherNet focused specifi-
cally on thermal imaging under extreme weather, offering 800,000 annotated thermal im-
ages (640×512) with detailed labels for pedestrian and vehicle detection, thereby address-
ing the unique challenges of low-visibility and temperature-dependent feature extraction 
[12]. Additionally, a custom Extreme Weather Corpus was incorporated to fill gaps in rare 
conditions, featuring 200,000 frames captured during sandstorms and blizzards using a 
roof-mounted sensor suite (FLIR thermal camera, Velodyne LiDAR, ZED 2i RGB camera) 
mounted on a test vehicle. This custom dataset includes annotations for 13 semantic seg-
mentation classes (e.g., road, vehicle, pedestrian), ensuring the framework’s performance 
is validated even in infrequent but high-risk weather events. Together, these three da-
tasets collectively cover a broad spectrum of weather intensities, sensor modalities, and 
annotation tasks, enabling a rigorous and comprehensive evaluation of the framework’s 
robustness. 

To comprehensively evaluate the performance of the proposed framework, five state-
of-the-art methods were selected for comparison, covering diverse technical paradigms in 
weather-robust perception to ensure the validity of the benchmarking. Specifically, the 
Single-domain Residual Network-50 (ResNet-50) served as a representative of conven-
tional single-domain models, trained exclusively on clear weather data and thus reflecting 

https://pinnaclepubs.com/index.php/PAPPS


Pinnacle Academic Press Proceedings Series https://pinnaclepubs.com/index.php/PAPPS 
 

Vol. 4 (2025) 254  

the limitations of models that lack cross-weather adaptation capabilities. The Domain-
Adversarial Neural Network (DANN), a two-domain adversarial adaptation model (clear 
to rain), was included as a typical example of single-pair domain adaptation, highlighting 
the constraints of methods designed for only two specific weather scenarios. Correlation 
Alignment (CORAL), a metric-based alignment method, was chosen to represent tech-
niques that focus on multi-domain feature correlation, offering insights into the effective-
ness of statistical feature alignment. The Multi-source Maximum Mean Discrepancy 
(MMD) [6], a multi-domain adaptation model that uses maximum mean discrepancy for 
alignment, was selected to benchmark against other multi-source adaptation approaches, 
enabling comparisons in handling multiple weather domains simultaneously [13]. Finally, 
CrossWeigh, a recent weather-robust perception model that relies solely on data augmen-
tation without explicit domain adaptation mechanisms, provided a reference for evaluat-
ing the added value of domain adaptation beyond data-driven augmentation strategies. 
Together, these baselines span single-domain, single-pair adaptation, multi-domain align-
ment, and augmentation-based methods, ensuring a comprehensive assessment of the 
proposed framework’s advancements. 

To comprehensively assess the performance of the proposed framework and base-
lines across perception tasks and practical deployment requirements, three key evaluation 
metrics were adopted, each tailored to capture distinct aspects of model capability. Spe-
cifically, for object detection tasks, mean Average Precision (mAP) at Intersection over 
Union (IoU) values ranging from 0.5 to 0.95 was used. This standard metric in computer 
vision quantifies detection accuracy across varying levels of overlap between predicted 
and ground-truth bounding boxes, ensuring robustness to different object localization 
precision requirements. For semantic segmentation, mean Intersection over Union (mIoU) 
was selected, a widely accepted metric that measures the average overlap between pre-
dicted and true semantic regions across all classes, effectively reflecting the model’s ability 
to distinguish fine-grained scene elements (e.g., road, vehicle, pedestrian) under diverse 
weather conditions. Additionally, efficiency was evaluated via inference latency (meas-
ured in milliseconds) on an NVIDIA A100 Graphics Processing Unit (GPU), a critical met-
ric for automotive systems where real-time responsiveness (typically ≤50ms) is essential 
to support timely decision-making and ensure driving safety. Together, these metrics col-
lectively quantify the framework’s accuracy in core perception tasks and its practical fea-
sibility for deployment in autonomous driving systems. 

A stratified 5-fold cross-validation was adopted, with 80% of data used for training 
(including all weather conditions) and 20% reserved for testing (unseen weather intensi-
ties, e.g., heavy fog not in training). All models were trained for 100 epochs with early 
stopping (patience=10) to avoid overfitting. 

4.2. Main Results 
Under heavy fog, it achieved 82.3% mAP for object detection, an improvement of 

19.2% compared to the best baseline, Multi-source MMD, and 78.5% mIoU for segmenta-
tion, an increase of 16.7% [14]. In terms of efficiency, its inference latency of 42ms met real-
time requirements for automotive systems (Table 3). 

Table 3. Performance Comparison Across Weather Conditions. 

Model Clear 
(mAP) 

Rain 
(mAP) 

Fog 
(mAP) 

Snow 
(mAP) 

mIoU 
(All) 

Latency 
(ms) 

Proposed 
Framework 

91.2% 85.6% 82.3% 79.1% 78.5% 42 

Multi-source MMD 
[6] 89.5% 76.9% 63.1% 68.5% 61.8% 58 

CrossWeigh [7] 88.3% 72.1% 59.8% 62.4% 57.3% 38 
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Single-domain 
ResNet 

87.9% 65.3% 51.7% 54.2% 52.6% 35 

Figure 5 illustrates performance degradation curves across increasing weather inten-
sity, showing that the proposed framework exhibits the slowest drop in accuracy, with 
examples such as mAP decreasing by only 11.2% from light to heavy rain, compared to 
28.7% for Single-domain ResNet-50. This confirms its ability to handle dynamic domain 
shifts.  

 
Figure 5. Performance Degradation Under Increasing Weather Intensity. 

4.3. Ablation Studies 
To quantify the contribution of each key component within the proposed framework, 

a series of ablation experiments were conducted by iteratively removing individual mod-
ules and evaluating the resulting performance changes. Specifically, when the cross-
modal contrastive loss was excluded from the framework, the mean Average Precision 
(mAP) under fog conditions decreased by 8.7%, a result that underscores the critical role 
of sensor fusion in preserving feature consistency across heterogeneous data sources. Sim-
ilarly, disabling the adversarial domain alignment mechanism led to a 12.3% drop in mAP 
under snowy conditions, confirming that cross-domain feature alignment is essential for 
mitigating weather-induced distribution shifts. Additionally, omitting the weather-aware 
attention blocks in the RGB encoders resulted in a 9.5% accuracy loss in rainy conditions, 
which highlights the value of weather-specific feature recalibration in suppressing noise 
(e.g., rain streaks) and emphasizing stable visual cues (e.g., road edges). Collectively, these 
findings demonstrate that each component contributes uniquely to the framework’s ro-
bustness, with their integration enabling the superior performance observed across di-
verse weather conditions. 
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4.4. Error Analysis 
A pie chart (Figure 6) summarizes error sources in the worst-performing condition 

(heavy snow). Misclassifications due to severe occlusion accounted for 42%, while sensor 
noise (LiDAR point sparsity) contributed 35%, indicating potential improvements in oc-
clusion handling and noise reduction. 

 
Figure 6. Error Sources in Heavy Snow Conditions. 

5. Discussion 
The experimental results demonstrate that the proposed multi-domain adaptation 

framework significantly enhances autonomous driving perception robustness under di-
verse weather conditions, addressing critical limitations of existing methods. Three key 
contributions emerge from this work. First, the integration of heterogeneous sensors (Red, 
Green, Blue (RGB), Light Detection and Ranging (LiDAR), thermal) with domain-specific 
encoders enables the capture of complementary weather-robust features. These include 
cases where thermal imaging preserves edge information in fog, while LiDAR maintains 
depth cues in rain, thereby overcoming modality-specific vulnerabilities highlighted in 
prior studies. Second, the cross-modal contrastive loss and adversarial alignment mecha-
nisms effectively mitigate dynamic domain shifts, as evidenced by the framework’s 11.2% 
slower accuracy degradation under increasing weather intensity compared to single-do-
main models [15]. Third, the multi-task optimization strategy balances perception accu-
racy and real-time inference efficiency with a latency of 42 ms, meeting the strict timing 
constraints of automotive systems. 

These findings align with broader efforts to advance weather-robust perception in 
autonomous driving. For example, Müller emphasized the need for multi-sensor fusion 
to counteract weather-induced sensor degradation, a challenge that is directly addressed 
by our framework’s cross-modal alignment. Similarly, the framework’s ability to general-
ize to unseen weather conditions responds to the call for scalable domain adaptation in 
real-world driving scenarios. 

Despite these strengths, two primary limitations warrant consideration. First, perfor-
mance in extreme sandstorms remains suboptimal (71.3% mean Average Precision 
(mAP)), which is attributed to severe LiDAR signal attenuation and thermal image satu-
ration, a gap that is also noted in recent desert driving studies. Second, computational 
overhead (12.8 Giga Floating-Point Operations per Second (GFLOPs)) exceeds the 10 
GFLOPs target for edge deployment, requiring model compression techniques such as 
knowledge distillation [16,17]. 
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6. Conclusion 
This study presents a multi-domain adaptation framework designed to enhance the 

robustness of autonomous driving perception under diverse weather conditions, address-
ing a critical bottleneck in real-world deployment of self-driving systems. By integrating 
heterogeneous sensor data (RGB images, LiDAR point clouds, and thermal imaging) 
through domain-specific encoders and cross-modal alignment mechanisms, the frame-
work achieves superior performance across rain, fog, snow, and extreme weather condi-
tions, outperforming state-of-the-art baselines in both object detection (up to 82.3% mAP) 
and semantic segmentation (up to 78.5% mIoU). 

The core innovations of this work lie in three interconnected advancements: first, the 
use of weather-aware modality-specific encoders that leverage the unique strengths of 
each sensor, which include thermal imaging for preserving edge information in low visi-
bility, LiDAR for stable depth cues in precipitation, and RGB for rich texture under mod-
erate conditions, thereby mitigating the modality-specific vulnerabilities identified in 
prior research. Second, the integration of adversarial cross-domain alignment and con-
trastive multi-modal fusion, which enables the model to learn invariant features across 
weather domains while preserving task-relevant information, a capability critical for gen-
eralizing to unseen weather intensities. Third, the multi-task optimization strategy that 
balances perception accuracy and real-time inference efficiency (42ms latency), meeting 
the strict timing constraints of automotive systems. 

These findings contribute to both theoretical and practical advancements in autono-
mous driving. Theoretically, they expand the application of multi-domain adaptation to 
multi-sensor fusion scenarios, providing a blueprint for addressing domain shift in com-
plex, dynamic environments. Practically, the framework’s ability to maintain high perfor-
mance across diverse weather conditions reduces the risk of perception failure in real-
world driving, which is linked to 23% of weather-related autonomous driving incidents. 

Despite these successes — performance in extreme sandstorms (71.3% mAP) and 
computational overhead (12.8 GFLOPs) require further optimization. Future work will 
focus on integrating 77GHz radar data to enhance extreme weather robustness, adopting 
knowledge distillation for model compression, and developing dynamic adaptation mod-
ules that adjust to real-time weather changes. By addressing these challenges, the pro-
posed framework moves closer to enabling reliable autonomous driving in the full spec-
trum of real-world weather conditions, advancing the goal of safe and widespread de-
ployment of self-driving technology. 
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