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Abstract: This study presents a modular framework that integrates artificial intelligence (AI) with 
Traditional Chinese Medicine (TCM) to enable precision and personalized diagnosis. Addressing 
the semantic ambiguity and unstructured nature of TCM knowledge, we construct an ontology-
driven knowledge graph capturing over 4,000 symptoms, 900 syndromes, and 1,800 herbs from 
classical texts, clinical guidelines, and electronic records. A four-stage inference engine, encompass-
ing symptom clustering, Bayesian syndrome-disease mapping, rule-based prescription generation, 
and patient-specific adjustments, delivers explainable, adaptable recommendations. The system is 
deployed using a microservice architecture with Docker-based SaaS access and real-time API inte-
gration. Evaluated on 500 clinical cases and a validation set of 50 expert-reviewed cases, the frame-
work achieved high diagnostic accuracy (Top-1: 79.4%), prescription precision (83.6%), and inter-
pretability (mean expert rating: 4.52/5), outperforming rule-based and black-box baselines. This re-
search advances the formalization of TCM through AI-enhanced reasoning, bridging symbolic 
knowledge with statistical learning to support scalable, trustworthy decision-making. Future work 
will extend to multimodal diagnostic integration and clinical deployment in diverse care settings. 

Keywords: Traditional Chinese Medicine (TCM); knowledge graph; intelligent inference; precision 
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1. Introduction 
The application of artificial intelligence (AI) in healthcare has opened new frontiers 

for personalized and precise medical decision-making, particularly in domains character-
ized by complex, context-rich knowledge systems. Traditional Chinese Medicine (TCM), 
with its holistic diagnostic framework and centuries-old therapeutic corpus, represents a 
unique and underutilized resource for modern integrative medicine. However, the un-
structured nature of TCM knowledge, the lack of standardized representation, and the 
difficulty of formalizing its diagnostic logic have limited its incorporation into contempo-
rary clinical decision support systems. Bridging this gap requires not only digitization of 
TCM knowledge, but also intelligent inference mechanisms capable of mimicking the nu-
anced, context-sensitive reasoning traditionally practiced by skilled TCM physicians. 

Studies have demonstrated the efficacy of TCM-derived compounds in anticancer 
therapy, establishing TCM as a promising source of novel bioactive agents, while further 
reviews have highlighted the pharmacological properties of traditional ingredients—such 
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as medicinal insects commonly used in TCM—in functional food and therapeutic appli-
cations [1,2]. Moreover, the integration of TCM into Western medical contexts has been 
explored through case-based approaches, revealing opportunities for hybrid diagnostic 
models and AI-assisted TCM deployment in real-world clinical environments [3]. In on-
cology, evidence-based reviews have shown that TCM, when supported by structured 
data and systematic documentation, can yield measurable outcomes, reinforcing its po-
tential in complex disease management [4]. 

Despite these promising developments, effective integration of TCM into intelligent 
medical systems remains hampered by several structural deficiencies, primarily the ab-
sence of a formal, computable knowledge base and reliable inferencing strategies. 
Knowledge graphs (KGs), which model domain knowledge through structured semantic 
representations of entities and their interrelations, have emerged as powerful tools in this 
context. Recent surveys emphasize the growing sophistication of automatic KG construc-
tion techniques, which facilitate large-scale knowledge extraction from unstructured cor-
pora using natural language processing and machine learning [5]. Knowledge graph com-
pletion methods, such as embedding-based link prediction, graph neural networks, and 
rule learning, have further enhanced the applicability of KGs in supporting dynamic rea-
soning in medical and biomedical domains [6,7]. Specifically, KGs have shown great po-
tential in pharmaceutical research and clinical knowledge discovery, enabling intelligent 
retrieval and association of drugs, diseases, and molecular targets [8]. 

However, TCM knowledge poses unique challenges to KG construction due to its 
linguistic, logical, and epistemological complexity. Unlike Western biomedical 
knowledge, TCM operates through principles such as yin-yang balance, the five elements, 
and syndrome differentiation, which are often expressed in metaphorical or symbolic lan-
guage. Addressing this requires hybrid methodologies that combine symbolic reasoning 
with data-driven techniques. Intelligent inference, particularly in the form of fuzzy logic 
systems, probabilistic reasoning, and neuro-symbolic architectures, has been explored in 
other domains such as the Internet of Things, cognitive modeling, and traffic systems, 
offering useful paradigms for modeling uncertainty, context-dependence, and grada-
tional logic [9-11]. These paradigms have also been compared and evaluated in environ-
mental modeling scenarios, demonstrating the strengths of adaptive neuro-fuzzy systems 
in capturing nonlinear and ambiguous relationships, characteristics that are also inherent 
in TCM diagnostic reasoning [12]. 

Against this backdrop, this study proposes a novel framework for constructing a 
structured, ontology-based TCM knowledge base and implementing a multi-layered in-
telligent inference system designed to emulate the principles of TCM diagnosis and treat-
ment. The research addresses three core challenges: first, the formal representation of 
TCM knowledge through graph-based ontologies; second, the implementation of explain-
able and adaptive inference mechanisms that can reproduce clinical reasoning paths; and 
third, the empirical evaluation of such a system in supporting precision diagnosis and 
personalized treatment recommendations. By synthesizing methodologies from AI 
knowledge representation, semantic reasoning, and TCM informatics, this study contrib-
utes both a theoretical model and a practical system for advancing the role of TCM in the 
era of intelligent healthcare. The ultimate goal is to realize a clinically meaningful, algo-
rithmically interpretable, and epistemologically respectful integration of TCM knowledge 
into modern precision medicine. 

2. Related Works 
The intersection of artificial intelligence (AI), knowledge representation, and preci-

sion diagnosis has emerged as a critical research area in modern medical informatics. Nu-
merous studies have explored the integration of computational tools into early disease 
detection and individualized treatment planning. Shao et al. developed a set of AI-driven 
diagnostic tools aimed at early identification of critical illnesses, employing ensemble 

https://pinnaclepubs.com/index.php/PAPPS


Pinnacle Academic Press Proceedings Series https://pinnaclepubs.com/index.php/PAPPS 
 

Vol. 4 (2025) 128  

learning and image-feature fusion across multiple modalities to improve clinical sensitiv-
ity and specificity [13]. Similarly, Smith et al. evaluated patients' perspectives on Alzhei-
mer's precision diagnostics, using qualitative methods to examine how patients respond 
to early detection based on biomarker-driven models, thereby highlighting the role of ex-
plainability and personalization in AI-assisted clinical decision-making [14]. 

In the oncology domain, AI has been extensively studied as a catalyst for precision 
diagnosis. Chen et al. presented a comprehensive framework for integrating AI in cancer 
diagnostics, utilizing convolutional neural networks (CNNs) and patient-level genomics 
to enhance therapeutic targeting and survival prediction [15]. Extending this, Sulewska et 
al. identified a 14-lncRNA molecular signature for non-small cell lung cancer (NSCLC), 
combining transcriptomic profiling with machine learning classifiers such as support vec-
tor machines and random forests to enable high-specificity diagnosis [16]. These studies 
underscore the importance of structured knowledge and algorithmic interpretation in ad-
vancing personalized diagnostics, which parallels the TCM domain where similarly lay-
ered reasoning over symbolic knowledge is essential. 

Semantic reasoning has played a crucial role in bridging heterogeneous data modal-
ities and supporting contextual decision-making. Zheng et al. proposed a deep fusion 
matching network that integrates structured and unstructured semantics for knowledge 
graph inference, improving accuracy in medical Q&A tasks [17]. Li et al. introduced a joint 
embedding model for image-text pairs through aligned visual and textual semantics, us-
ing attention-based neural reasoning to capture intermodal relationships in clinical da-
tasets [18]. Likewise, Ding et al. applied bi-temporal semantic reasoning to remote sensing 
image analysis, constructing dual-stream architectures that emulate temporal shifts in se-
mantic patterns—an approach conceptually similar to the multi-phase diagnostic logic 
employed in traditional medicine [19]. Zheng et al. further demonstrated that explicit se-
mantic representation learning can significantly boost performance in complex visual rea-
soning, reinforcing the argument for structured knowledge in high-dimensional decision 
tasks [20]. 

The clinical implementation of intelligent reasoning systems has spurred substantial 
interest in decision support research. Chen et al. reviewed the current landscape of clinical 
decision support systems (CDSS), identifying the need for greater interoperability and 
domain-specific ontological modeling to enhance adoption [21]. Antoniadi et al. con-
ducted a systematic review on explainable AI (XAI) within CDSS, comparing models such 
as LIME, SHAP, and attention visualization, and emphasized the necessity of interpreta-
bility in risk-sensitive medical environments [22]. Building on this, Wang et al. proposed 
a CDSS framework for oncology powered by AI-based recommendations and dynamic 
risk modeling, tested using survival analysis and clinician feedback loops [23]. Liu et al. 
explored the use of large language models (LLMs), such as ChatGPT, to generate action-
able clinical suggestions, assessing their usability and potential biases through real-world 
EMR simulations [24]. These systems echo the challenges faced in TCM AI, where reason-
ing transparency and domain alignment are critical for clinical trust. 

The concept of hybrid intelligence, collaborative systems combining human and ar-
tificial cognitive capacities, has gained traction in designing next-generation CDSS. Del-
lermann et al. proposed a taxonomy of human-AI collaboration patterns, identifying de-
sign principles for hybrid knowledge systems across decision domains [25]. Molenaar ex-
tended this framework to learning technologies, emphasizing co-adaptive feedback mech-
anisms that mirror TCM's iterative diagnostic-refinement process [26]. This paradigm is 
also reflected in engineering contexts: Al-Othman et al. applied hybrid numerical-AI mod-
els in renewable energy systems, while Peeters et al. explored collective decision-making 
among human and machine agents to address system-level uncertainty[27,28]. These con-
tributions collectively inform the architectural design of hybrid TCM inference engines. 

Finally, the broader field of precision and personalized medicine has laid the philo-
sophical and technical groundwork for individualized treatment systems. Sugandh et al. 
reviewed personalized interventions in diabetes care, employing patient-level clustering 
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and therapeutic feedback loops [29]. Alghamdi et al. explored nanotechnology's role in 
tailored drug delivery, drawing attention to the integration of molecular diagnostics and 
contextualized treatment [30]. Gambardella surveyed recent cancer therapy advance-
ments, focusing on precision biomarkers and adaptive regimens, while Delpierre and 
Lefèvre critiqued the underlying assumptions of the precision medicine paradigm, point-
ing to its epistemological alignment with data-driven health models [31,32]. These studies 
reinforce the relevance of semantic, modular, and human-aligned systems in delivering 
truly individualized care, goals that TCM reasoning systems seek to fulfill through AI. 

3. Framework Design and Implementation 
The implementation of a precision-oriented Traditional Chinese Medicine (TCM) di-

agnostic support system requires the integration of structured knowledge representation 
and intelligent inference mechanisms. This section details the architectural design, meth-
odological flow, and functional components of the proposed framework, based on a 
multi-layer knowledge graph and a hybrid reasoning engine tailored to the hierarchical 
logic of TCM diagnostics. The framework is developed to capture the semantic richness 
of TCM knowledge, operationalize its diagnostic principles, and deliver interpretable and 
personalized treatment recommendations. 

3.1. Knowledge Base Construction 
To formalize the semantic structure of TCM, we construct an ontology-based 

knowledge graph that encodes entities, attributes, and relations relevant to diagnosis and 
treatment. The knowledge base integrates multiple sources: classical texts (e.g., Huangdi 
Neijing, Shanghan Lun), national clinical guidelines, empirical case reports, and digitized 
electronic medical records. Entity extraction is performed using a domain-specific named 
entity recognition (NER) model fine-tuned on a manually annotated corpus. The core en-
tity types include Symptoms, Syndromes, Diseases, Herbs, Formulas, Acupoints, and 
Pathogenic Factors, while relation types include has symptom, leads to, treated by, con-
traindicated with, and located in meridian. 

A simplified schema of the knowledge graph ontology is depicted in Figure 1, illus-
trating the semantic interconnections among diagnostic entities. 

 
Figure 1. Ontological Schema of the TCM Knowledge Graph. 

The construction pipeline consists of three stages: Preprocessing and standardization 
of raw text using classical Chinese segmentation models, Entity-relation extraction via a 
combination of rule templates and BERT-based contextual classification, and Graph pop-
ulation and validation using Neo4j and RDF-based triple storage. The resulting 
knowledge base comprises over 4,200 unique symptoms, 930 syndromes, 1,100 diseases, 
and 1,800 herbs with more than 17,000 distinct relations. Table 1 summarizes the core sta-
tistics of the structured knowledge base. 

Table 1. Summary Statistics of the TCM Knowledge Graph. 

Entity Type Count Example 
Symptoms 4,231 Headache, Chest tightness 
Syndromes 936 Liver Qi stagnation 

Diseases 1,102 Hypertension, Damp-heat diarrhea 
Herbs 1,847 Scutellaria, Angelica 

Classical Formulas 513 Xiaochaihu decoction 
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Relations 17,036 has symptom, treated by, causes 

3.2. Multi-Layer Intelligent Reasoning Engine 
The diagnostic inference engine is constructed as a modular, multi-layered reasoning 

system designed to emulate the sequential process of syndrome differentiation and treat-
ment selection inherent in TCM clinical practice. It comprises four core modules: 

3.2.1. Symptom Clustering and Syndrome Hypothesis Generation 

This module applies hierarchical fuzzy clustering to symptom vectors derived from pa-
tient inputs, mapping them to candidate syndrome categories. We introduce a soft 
matching mechanism based on TF-IDF vectorization and cosine similarity, allowing for 
partial and ambiguous symptom representation. 

3.2.2. Syndrome-Disease Mapping and Evidence Accumulation 
Bayesian inference is employed to compute posterior probabilities of disease condi-

tions given syndrome hypotheses. The prior probabilities are estimated from co-occur-
rence frequencies in a 10,000-record EMR corpus, while likelihoods are calculated using 
rule-based pattern templates. 

3.2.3. Treatment Recommendation via Rule Graph Traversal 
Once syndromes and diseases are inferred, the system traverses the knowledge 

graph to identify optimal prescriptions and compatible herbs. Compatibility scoring inte-
grates empirical co-usage data and contraindication checks through an interference-filter-
ing algorithm designed to reduce conflicting herb combinations. 

3.2.4. Personalization Layer 
Patient-specific features such as age, constitution type, pregnancy status, and comorbidi-
ties are incorporated to adjust treatment recommendations using a decision-tree overlay 
and exception rule base. 

The logic flow and inter-module dependencies are illustrated in Figure 2. 

 
Figure 2. Reasoning Process Flow in the Intelligent TCM Diagnosis System. 
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The inference process is interpretable and traceable, enabling clinicians to inspect the 
logical paths, confidence scores, and knowledge source citations supporting each recom-
mendation. Table 2 details the core reasoning strategies adopted in each module. 

Table 2. Reasoning Modules and Associated Techniques. 

Module Methodology Output 
Symptom Matching TF-IDF + Fuzzy C-Means Syndrome candidates (ranked) 

Syndrome-Disease Inference Bayesian Network Disease probabilities 

Treatment Generation 
Rule-based Graph 

Traversal 
Formula/Herb 

recommendations 
Personalization Filtering Rule Base + Decision Tree Adjusted therapy set 

3.3. System Architecture and Implementation 
The system leverages a high-performance, cloud-native deployment framework 

based on Docker and Gradle, supporting cross-platform compatibility (e.g., CentOS, Win-
dows). Modular decoupling and interface abstraction allow plug-in functionality for fu-
ture diagnostic extensions. The architecture ensures high availability via MySQL cluster 
deployment, addressing stability requirements in clinical settings. 

The complete system is implemented using a microservice-based architecture with 
three primary layers: 

Data Layer: Stores structured knowledge in a Neo4j graph database and patient his-
tory in MongoDB; Inference Layer: Contains Python-based modules for semantic match-
ing, probabilistic reasoning, and rule traversal; Interface Layer: Provides a clinician-facing 
web application built with Vue.js and Flask, supporting symptom entry, diagnostic visu-
alization, and treatment output. Figure 3 shows the system architecture and its modular 
integration. 

 
Figure 3. System Architecture of the Knowledge-Based TCM Diagnosis Platform. 

The system supports RESTful API endpoints and HL7/FHIR-compatible export in-
terfaces, enabling integration with hospital information systems (HIS). It operates with 
average reasoning latency under 1.8 seconds per case and supports both batch mode anal-
ysis and real-time consultation scenarios. The Cloud-Native Deployment and SaaS Access 
Architecture is shown in Figure 4. 
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Figure 4. Cloud-Native Deployment and SaaS Access Architecture. 

4. TCM Reasoning Modules for Precision Diagnosis 
The modularization of diagnostic reasoning in Traditional Chinese Medicine (TCM) 

is fundamental to achieving precision, explainability, and scalability in computational im-
plementations. Given the layered diagnostic structure of TCM, ranging from initial symp-
tom identification to final therapeutic personalization, this section delineates four key rea-
soning modules developed within our framework. Each module encapsulates a distinct 
phase in the diagnostic pipeline and is designed to emulate expert-level decision logic 
while leveraging structured knowledge and semantic inference techniques. 

4.1. Module I: Symptom-Pattern Mapping via Fuzzy Similarity 
The first module is responsible for mapping patient-reported symptoms to candidate 

syndromes using a fuzzy matching mechanism that accommodates the high variability 
and linguistic ambiguity inherent in symptom expression. Leveraging the knowledge 
graph's indexed symptom embeddings, each patient input is vectorized and matched 
against syndrome profiles using a weighted cosine similarity metric. We assign higher 
weights to discriminative symptoms based on TF-IDF values across syndrome clusters. 

To validate the module, we constructed a test set of 200 annotated cases from a multi-
center TCM diagnosis dataset. The top-3 accuracy for syndrome recognition reached 
87.2%, demonstrating robust performance despite synonymic variations and incomplete 
inputs. An example of the fuzzy matching output is visualized in Figure 4, with gradated 
heatmaps representing symptom-to-syndrome association strengths. Table 3 summarizes 
the performance metrics across different symptom input lengths. 

Table 3. Syndrome Matching Accuracy by Symptom Input Length. 

Avg. Symptom Count Top-1 Accuracy Top-3 Accuracy Avg. Match Time (ms) 
≤ 4 symptoms 61.4% 82.7% 832 
5–7 symptoms 72.9% 87.2% 964 
≥ 8 symptoms 75.1% 88.5% 1,102 

4.2. Module II: Evidence-Weighted Syndrome-to-Disease Reasoning 
This module performs probabilistic mapping from identified syndromes to underly-

ing disease entities using Bayesian inference. Each syndrome node in the knowledge 
graph is associated with one or more diseases, with transition likelihoods computed from 
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historical co-occurrence frequencies and clinical pathway references. The conditional 
probabilities are dynamically updated via Laplace-smoothed frequency priors. 

Let S denote a syndrome and D a disease. The posterior probability 𝑃𝑃(𝐷𝐷 ∣ 𝑆𝑆) is com-
puted as: 

𝑃𝑃(𝐷𝐷|𝑆𝑆) =
𝑃𝑃(𝑆𝑆|𝐷𝐷) ⋅ 𝑃𝑃(𝐷𝐷)

𝑃𝑃(𝑆𝑆)
 

Where 𝑃𝑃(𝐷𝐷 ∣ 𝑆𝑆) is derived from the knowledge graph traversal paths and P(D) is 
estimated from EMR case frequency. This process enables the system to rank likely diag-
noses with probabilistic scores, thus enabling both differential diagnosis and comorbidity 
detection. 

4.3. Module III: Compatibility-Driven Prescription Inference 
Upon disease and syndrome confirmation, the system invokes the prescription infer-

ence module, which identifies suitable formulae and herbal components based on pattern-
treatment mappings. This process incorporates three reasoning steps: rule-based match-
ing of syndrome-treatment templates, compatibility scoring of herbs using a co-occur-
rence graph, and contraindication screening against patient metadata. 

Prescription compatibility is modeled as a bipartite graph where herbs and formulas 
are connected via co-usage weightings extracted from over 10,000 verified prescriptions. 
Graph edge weights represent empirical efficacy scores adjusted by herbal synergy pat-
terns and traditional classifications. Conflicts such as herb-to-herb incompatibility or pa-
thology-specific contraindications are flagged using knowledge graph constraints. Table 
4 provides a sample output from a liver-heat syndrome case. And the Knowledge-Based 
Personalized Prescription Workflow is shown as Figure 5. 

Table 4. Example Prescription Reasoning Output. 

Syndrome Core Formula 
Herb Set 

Recommendation 
Compatibility 

Score 

Liver Heat Longdan Xiegan 
Decoction 

Gentian, Bupleurum, 
Scutellaria baicalensis, 

Alisma orientale, 
Rehmannia glutinosa, 

Plantago asiatica 

0.91 

 Modified Xiaoyao 
Powder 

Bupleurum, Angelica 
sinensis, Poria cocos, 

Paeonia lactiflora, peony 
bark, Gardenia 

0.86 

 
Figure 5. Knowledge-Based Personalized Prescription Workflow. 

4.4. Module IV: Personalized Adjustment via Rule Conditioning 
Precision diagnosis requires the tailoring of standard treatment pathways to individ-

ual patient contexts. This module integrates patient-specific metadata such as age, sex, 
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constitution type, comorbidities, and allergic history to refine the final treatment plan. A 
ruleset comprising 376 manually encoded personalization constraints, verified by senior 
TCM physicians, serves as a post-processing filter to adjust dosages, substitute herbs, or 
replace formulas entirely. 

The personalization process is implemented as a decision-tree overlay atop the initial 
prescription output. In scenarios involving pregnancy or hepatic insufficiency, high-ac-
tivity herbs are downregulated or substituted per TCM pharmacovigilance rules. 

5. Evaluation of the Knowledge-Driven Diagnosis System 
To assess the effectiveness, robustness, and clinical relevance of the proposed TCM 

knowledge-based intelligent reasoning system, a multi-faceted evaluation was conducted 
across real-world case data, expert validation, and comparative benchmarking. The eval-
uation focused on measuring diagnostic accuracy, consistency of treatment recommenda-
tions, reasoning efficiency, and expert trustworthiness. Both quantitative metrics and 
qualitative insights were utilized to comprehensively validate system performance in 
practical precision diagnosis scenarios. 

5.1. Dataset and Experimental Setup 
The evaluation employed a structured dataset of 500 anonymized TCM clinical cases, 

sourced from three urban hospitals in China. Each case contains patient symptom records, 
physician-recorded syndrome differentiation, disease diagnosis, and finalized herbal pre-
scription. An additional set of 50 complex cases, annotated by a panel of five senior TCM 
experts, served as the validation cohort to assess personalization logic and treatment ap-
propriateness. 

Three baseline systems were selected for comparison: 
Baseline A: Keyword-based syndrome retrieval engine without inference capability; 

Baseline B: End-to-end deep learning classifier trained on symptom–syndrome pairs; 
Baseline C: Rule-based static expert system without personalization module. Table 5 sum-
marizes the experimental dataset composition. 

Table 5. Evaluation Dataset Overview. 

Dataset 
Source 

Hospitals Total Cases 
Avg. Symptoms 

per Case Expert-Annotated? 

Training Set H1, H2, H3 400 6.7 No 
Testing Set H2, H3 100 7.2 No 

Expert Validation 
Set 

H1, H2 50 8.1 Yes 

5.2. Diagnostic Accuracy Evaluation 
Diagnostic performance was measured by matching the system-generated top syn-

drome-disease pair with physician-validated records. Accuracy metrics included Top-1 
and Top-3 correctness, macro F1-score, and recall. The proposed hybrid system achieved 
a Top-1 accuracy of 79.4%, outperforming all baselines by a significant margin. Table 6 
provides summary performance metrics across all models. As shown in Table 6. 

Table 6. Syndrome-Disease Diagnostic Performance Comparison. 

Metric Our System Baseline A Baseline B Baseline C 
Top-1 Accuracy (%) 79.4 51.2 63.7 58.3 
Top-3 Accuracy (%) 91.1 71.5 84.3 76.2 

Macro F1-score 0.827 0.594 0.709 0.676 
Recall 0.834 0.567 0.722 0.683 
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5.3. Treatment Recommendation Consistency 
The alignment of system-generated treatment outputs with ground-truth prescrip-

tions was assessed using overlap-based precision and the modified Jaccard similarity co-
efficient on herb sets. In cases with multi-herb formulas, an average recommendation pre-
cision of 83.6% was achieved, with significantly better adaptability observed in personal-
ized constraints handling. As shown in Table 7. 

Table 7. Treatment Recommendation Metrics (Top-10 Herbs). 

Metric Value 
Herb Set Precision (Top-10) 83.6% 

Jaccard Similarity (All Herbs) 0.77 
Personalization Conflict Avoidance Rate 96.1% 

Prescription Generation Latency 1.84 sec 

5.4. Expert Panel Validation 
To assess clinical trustworthiness, the expert panel reviewed system recommenda-

tions on the 50-case validation set using a 5-point Likert scale (1 = unacceptable, 5 = fully 
consistent). Evaluation criteria included diagnostic logic, treatment appropriateness, and 
personalization fit. The system achieved an average score of 4.52 across all cases, with 94% 
of cases receiving ratings above 4. As shown in Table 8. 

Table 8. Expert Validation Summary (n = 50 Cases). 

Evaluation Criterion Mean Score Std. Dev ≥4 Rating (%) 
Diagnostic Soundness 4.60 0.42 96% 

Prescription Appropriateness 4.48 0.51 92% 
Personalization Fit 4.49 0.56 94% 

5.5. System Robustness and Generalization 
The system supports proactive clinical management by analyzing seasonal syndrome 

patterns and enabling resource preallocation, embodying the preventive healthcare phi-
losophy central to TCM. It also facilitates multi-role collaboration (clinicians, patients, ad-
ministrators) by integrating access controls and reducing redundant data entry through 
structured electronic records. To test generalizability, the system was applied to 25 unseen 
cases with rare syndromes or cross-pattern overlaps. It maintained stable performance 
with Top-3 accuracy at 88.0% and returned interpretable and clinically reasonable infer-
ences, demonstrating robustness in low-frequency clinical contexts. Ablation experiments 
further indicated that removing the personalization module decreased prescription rele-
vance by 12.7%, underscoring its critical role in achieving individualized recommenda-
tions. The Full-Cycle Intelligent Diagnosis and Management Loop is shown as Figure 6. 
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Figure 6. Full-Cycle Intelligent Diagnosis and Management Loop. 

6. Discussion 
The integration of a standardized prescription database and dynamic treatment tem-

plates lowers entry barriers for junior practitioners and contributes to the standardization 
of TCM practices. Additionally, the system's SaaS-based architecture enables scalable de-
ployment for small-to-medium institutions, promoting digital health equity in under-
served regions. The system's superior diagnostic accuracy, interpretability, and personal-
ization capacity not only validate its internal architecture, but also reinforce the broader 
argument that hybrid knowledge-symbolic systems can enhance medical reasoning under 
complex semantic constraints. As emphasized in prior studies on AI-driven diagnosis in 
oncology and chronic disease management, the integration of rule-guided inference and 
statistical learning enables systems to better reflect real-world clinical complexity while 
retaining transparency in decision pathways [13,15,16]. 

This dual-layered architecture, informed by ontological design and probabilistic in-
ference, demonstrates an effective emulation of TCM's diagnostic logic. Unlike end-to-end 
black-box models, the modular structure of the system allows traceability and explanation 
at each stage, from symptom clustering to syndrome identification and treatment refine-
ment, addressing a core concern identified by Antoniadi et al. regarding the need for ex-
plainable AI (XAI) in clinical decision support [22]. Moreover, the personalization layer, 
which adapts treatment based on patient-specific factors and known contraindications, 
embodies the core principle of “treatment based on syndrome differentiation and consti-
tution”, aligning with the epistemological framework of TCM. This resonates with recent 
advances in personalized medicine and AI-assisted therapy planning, which emphasize 
the incorporation of individual phenotypes, behaviors, and environmental context into 
algorithmic treatment design [29,31]. 

From a methodological standpoint, the study extends current research in semantic 
reasoning and knowledge graph application by adapting general-purpose inference 
frameworks to domain-specific symbolic rules in TCM. While semantic reasoning models 
such as deep fusion networks and visual-semantic embeddings have shown strong per-
formance in high-dimensional tasks [17,18,20], their adaptation to culturally embedded, 
linguistically diverse medical paradigms remains limited. By demonstrating the integra-
tion of TCM-specific ontologies with fuzzy logic and graph-based traversal reasoning, this 
work offers a concrete example of how culturally specific knowledge systems can be op-
erationalized through AI without epistemic distortion. Additionally, the modular inter-
pretability of each reasoning layer echoes the principles of hybrid human-AI collaboration, 
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where human domain knowledge is embedded as both constraint and context for machine 
reasoning [25,26,28]. 

Nonetheless, several limitations of the system warrant further exploration. First, 
while the knowledge base construction relied on a broad range of classical and contem-
porary TCM sources, the completeness and granularity of extracted relationships are in-
herently dependent on the quality of source standardization, a known challenge in medi-
cal ontology engineering [5,7]. Second, although the Bayesian reasoning model effectively 
captured syndrome-to-disease probabilities, it assumed conditional independence across 
features, which may oversimplify certain overlapping syndromes or comorbidities. Fu-
ture iterations could incorporate graph neural networks to learn contextual interactions 
more robustly. Third, while expert validation demonstrated high trust levels, actual clin-
ical deployment would require real-time interoperability with hospital information sys-
tems (HIS) and compliance with health informatics standards such as HL7 or FHIR, as 
discussed by Chen et al. and Wang et al. in their analyses of CDSS deployment frame-
works [21,23]. 

Ultimately, this research affirms that precision diagnosis in TCM can be significantly 
enhanced by hybrid AI systems that align with its theoretical foundations and clinical 
practices. The proposed architecture not only performs competitively across conventional 
evaluation metrics, but also offers a transparent and extensible platform for domain-spe-
cific reasoning, adaptable to future advancements in multimodal data integration, patient 
engagement, and personalized health technologies. 

7. Conclusion 
This study presents a comprehensive, modular framework for constructing a struc-

tured Traditional Chinese Medicine (TCM) knowledge base and implementing a multi-
layer intelligent reasoning system for precision diagnosis and treatment recommendation. 
The framework integrates classical TCM theory with contemporary AI methodologies, 
combining ontological modeling, fuzzy semantic similarity, Bayesian inference, and per-
sonalization rules to emulate the logical sequence of syndrome differentiation and therapy 
formulation. Empirical results across a multi-center dataset and expert-reviewed valida-
tion demonstrate that the system outperforms traditional rule-based and black-box diag-
nostic models in accuracy, consistency, and clinical interpretability. 

By formalizing TCM knowledge into a machine-readable graph structure and em-
bedding domain-specific inference mechanisms, the system enables scalable, explainable, 
and patient-centered diagnostic support. Its modular design allows transparency at each 
reasoning stage and supports adaptation across a range of clinical conditions and institu-
tional contexts. Moreover, the high concordance between system-generated outputs and 
expert assessments underscores the system's practical potential for integration into mod-
ern clinical workflows. 

Looking ahead, future work will focus on expanding the knowledge base to include 
multimodal diagnostic cues (e.g., tongue images, pulse waveforms), enhancing the rea-
soning engine with graph-based deep learning models, and validating the system through 
longitudinal clinical trials. The convergence of semantic AI and traditional medicine, as 
demonstrated in this research, offers a promising path toward developing culturally com-
petent, intelligent health systems capable of delivering precision care at scale. 
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