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Abstract: The prevalence of extracurricular tutoring has sparked ongoing debates regarding its 
causal impact on student academic performance. Traditional assessment methods often fail to ad-
dress selection bias and complex nonlinear relationships inherent in educational data. This study 
proposes a machine learning enhanced approach, Random Forest Propensity Score Matching (RF-
PSM), to overcome the limitations of conventional propensity score methods when analyzing high 
dimensional observational data. By leveraging random forests for propensity score estimation, the 
method captures intricate interactions among student characteristics while maintaining robust co-
variate balance. The analysis utilizes a nationally representative student performance dataset, in-
corporating demographic, socioeconomic, and prior academic achievement variables. Key findings 
reveal significant heterogeneous treatment effects: tutoring demonstrates the strongest positive im-
pact on median performing students, whereas effects diminish for both high and low achievers. The 
methodological contribution lies in demonstrating RF-PSM's superior performance over logistic re-
gression based matching through reduced bias in effect estimation. Practically, these results inform 
targeted educational policies by identifying student subgroups that benefit most from supplemental 
instruction. The study underscores the potential of combining machine learning with causal infer-
ence frameworks to derive more nuanced insights from educational big data. 

Keywords: extracurricular tutoring; random forest; propensity score matching; academic perfor-
mance; heterogeneous treatment effects 
 

1. Introduction 
The rapid expansion of extracurricular tutoring has become a global phenomenon, 

driven by increasing academic competition and parental aspirations for educational suc-
cess. In East and South Asian countries, socio-cultural expectations and norms foster in-
tense competition and high levels of stress among parents and students, which in turn 
drive the demand for extracurricular tutoring to enhance academic performance and skill 
acquisition [1]. While numerous studies have attempted to evaluate the impact of tutoring 
on student performance, the existing literature remains inconclusive due to methodolog-
ical limitations. Traditional approaches, such as linear regression or conventional propen-
sity score matching, often fail to account for the complex, nonlinear relationships inherent 
in educational data. Estimating causal effects using linear regression presents clear limi-
tations, particularly its reliance on the assumption that all potentially confounding varia-
bles are measured without error and correctly specified in the model. The biggest is that 
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the method generally assumes that all potentially confounding variables have been meas-
ured without error and properly included in the models specification [2]. These methods 
typically rely on strong parametric assumptions and may produce biased estimates when 
handling high-dimensional covariates or intricate interaction effects between student 
characteristics. The growing availability of large-scale educational datasets calls for more 
sophisticated analytical techniques capable of capturing these complexities while main-
taining robust statistical properties. 

Recent advances in machine learning have opened new possibilities for addressing 
these challenges in education policy evaluation. Machine learning (ML) is the scientific 
study of algorithms and statistical models that computer systems use to perform a specific 
task without being explicitly programmed [3]. Unlike traditional econometric methods, 
machine learning algorithms excel at identifying intricate patterns in observational data 
without requiring restrictive functional form assumptions. Traditional econometric meth-
ods rely on formal statistical and mathematical models to analyze economic data [4]. In 
particular, ensemble methods such as random forests demonstrate superior performance 
in modeling nonlinear relationships and automatically detecting interaction effects among 
variables. Random Forest is an evolution of Bagging, which aims to reduce the variance 
of a statistical model by simulating data variability through the random extraction of boot-
strap samples from a single training set and aggregating predictions for new records [5]. 
These capabilities make machine learning particularly well-suited for estimating propen-
sity scores in contexts where the selection mechanism into treatment (e.g., tutoring partic-
ipation) depends on a multifaceted combination of observed factors. Despite these ad-
vantages, the application of machine learning in causal inference for education research 
remains underexplored, especially in assessing heterogeneous treatment effects across di-
verse student populations. 

This study develops a Random Forest Propensity Score Matching (RF-PSM) frame-
work to assess the impact of extracurricular tutoring on academic achievement. By lever-
aging random forests for propensity score estimation, the research aims to improve accu-
racy over traditional logistic regression methods, while testing robustness to real-world 
data challenges like class imbalance and missing values. Systematic comparisons with 
conventional approaches will assess whether machine learning improves the validity of 
causal inference in education policy analysis. Beyond methodology, the study provides 
practical insights for educators and policymakers. Identifying student subgroups that 
benefit most from tutoring can guide targeted interventions and resource allocation. For 
example, effect heterogeneity by prior academic performance or socioeconomic status 
may warrant differentiated support programs. The findings also promote broader adop-
tion of data-driven decision-making in education. The paper is structured as follows: Re-
lated Work reviews causal inference and machine learning in education; Methodology 
details RF-PSM’s data preprocessing, modeling, and matching; Experiments present com-
parative results and subgroup analyses; Discussion interprets methodological and practi-
cal implications; and Conclusion outlines contributions and future directions. Integrating 
machine learning with causal inference, this work advances tools for evaluating educa-
tional interventions and highlights data science’s role in evidence-based policy. 

2. Related Works 
The analysis of extracurricular tutoring effects has traditionally relied on classical 

statistical methods, each carrying inherent limitations in addressing modern educational 
data challenges. Linear regression is a useful tool for predicting a quantitative response 
[6]. Linear regression models, while computationally straightforward, impose restrictive 
linearity assumptions that rarely hold in complex educational settings where socioeco-
nomic factors interact nonlinearly with pedagogical interventions. Logistic regression-
based propensity score matching (Logit-PSM), though widely adopted for observational 
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studies, frequently fails to capture high-dimensional interactions among student charac-
teristics, potentially leading to biased effect estimates. Logistic regression-based propen-
sity score matching is a widely used method in case-control studies to select individuals 
for the control group [7]. Recent advancements in double machine learning (DML) have 
attempted to mitigate these issues through a two-stage estimation process, yet its perfor-
mance heavily depends on correct specification of the nuisance functions, a requirement 
difficult to satisfy with real-world educational datasets. The DML framework seems at-
tractive because (i) it can be combined with a variety of standard supervised machine 
learning methods, and (ii) it can estimate average treatment effects for binary interven-
tions or outcomes [8]. 

Figure 1 illustrates the conceptual limitations of traditional methods through a 
knowledge graph representation of variable relationships in tutoring effect analysis. The 
left panel demonstrates how linear methods oversimplify reality by forcing unidirectional 
relationships, while the right panel shows the actual complex web of interactions that ma-
chine learning approaches can capture. 

 
Figure 1. Comparison of Traditional Linear Modeling vs. Actual Complex Relationships in Educa-
tional Data. 

Recent literature demonstrates growing recognition of machine learning's potential 
to overcome these methodological constraints. Random forest algorithms have shown 
particular promise in propensity score estimation due to their inherent capacity to handle 
nonlinearities and automatic feature interaction detection. One advantage of the random 
forest algorithm is its versatility [9]. Unlike parametric models requiring manual specifi-
cation of interaction terms, random forests systematically explore the covariate space 
through recursive partitioning, making them ideal for education datasets where im-
portant interactions may be unknown a priori. Alternative algorithms like XGBoost and 
Bayesian Additive Regression Trees (BART) have also been explored, though comparative 
studies suggest random forests strike an optimal balance between predictive accuracy and 
computational efficiency for moderate-sized educational datasets. Bayesian additive re-
gression trees provide a flexible approach to fitting a variety of regression models while 
avoiding strong parametric assumptions [10]. 

Table 1 presents a systematic comparison of methodological approaches, highlight-
ing how machine learning-enhanced methods address key limitations of traditional tech-
niques across three critical dimensions: nonlinearity handling, interaction detection, and 
robustness to misspecification. 

Table 1. Methodological comparison for tutoring effect analysis. 

Approach Nonlinearity 
Handling 

Interaction Detection Specification 
Robustness  

Linear Regression Poor None Fragile 
Logit-PSM Moderate Manual Only Moderate 
Double ML  Good  Partial Good  

RF-PSM (Proposed) Excellent Automatic Strong 
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The education data science field has simultaneously evolved in feature engineering 
practices, enabling more sophisticated treatment effect analyses. Modern studies increas-
ingly incorporate unstructured data sources such as student activity logs, textual feedback, 
and even physiological measurements through wearable devices. These developments al-
low for richer characterization of learner profiles beyond conventional demographic and 
academic records. Particularly noteworthy is the emerging practice of embedding high-
dimensional behavioral data into lower-dimensional representations that preserve mean-
ingful patterns while remaining computationally tractable for causal analysis. 

Figure 2 presents a flow diagram of the knowledge progression in educational effect 
analysis methodologies, tracing the evolution from early regression approaches to con-
temporary machine learning integrations. The funnel structure emphasizes how each 
methodological advancement has expanded the analyzable problem space while improv-
ing result reliability. 

 
Figure 2. Evolutionary Progression of Methodological Approaches in Educational Effect Analysis. 

This methodological progression underscores the research gap addressed by the cur-
rent study. Machine learning offers the capability to analyze vast amounts of educational 
data efficiently and at scale [11]. While machine learning has gained acceptance in predic-
tive educational analytics, its systematic application to causal questions, particularly 
through hybrid approaches combining random forests with matching techniques, remains 
underdeveloped. The present work contributes to this emerging literature by developing 
and validating a unified RF-PSM framework specifically optimized for educational inter-
vention analysis. 

3. Methodology 
The methodology section presents a comprehensive analytical framework for evalu-

ating the impact of extracurricular tutoring through Random Forest Propensity Score 
Matching. Random forests are statistical learning methods proposed for propensity score 
estimation in models involving complex interactions and nonlinear relationships among 
covariates [12]. This approach combines machine learning techniques with matching 
methods to address selection bias in observational educational data. Selection bias arises 
in observational data due to non-random treatment assignment and represents a major 
obstacle to valid causal inference; while randomized experiments are designed to elimi-
nate such bias, it is difficult to detect and correct in non-experimental studies [13]. Figure 
3 illustrates the three-stage analytical workflow, encompassing data preprocessing, pro-
pensity score estimation, and treatment effect calculation. 

 
Figure 3. Analytical workflow of RF-PSM framework for tutoring effect evaluation. 
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The dataset comprises student records from the National Education Longitudinal 
Study (NELS), including 15,362 observations, all with complete pre-treatment covariates. 
The binary treatment variable T indicates tutoring participation (T=1 for participants, T=0 
otherwise). The outcome Y represents standardized mathematics test scores scaled to a 
mean of 500 with standard deviation 100. The covariate vector X includes: 

X = {x1: prior test score, x2: parental income percentile,      
x3: school type, x4: weekly study hours}       (1) 
The propensity score e(x) is defined as the conditional probability of treatment as-

signment: 
e(x) = P(T = 1|𝐗𝐗 = x)          (2) 
The random forest algorithm estimates propensity scores through an ensemble of B 

decision trees. Each tree b is grown by recursively partitioning the covariate space based 
on impurity reduction. The information gain at each node is calculated as: 

∆𝐼𝐼 = 𝐼𝐼(𝜏𝜏) − (𝑁𝑁𝐿𝐿
𝑁𝑁𝜏𝜏
𝐼𝐼(𝜏𝜏𝐿𝐿) + 𝑁𝑁𝑅𝑅

𝑁𝑁𝜏𝜏
𝐼𝐼(𝜏𝜏𝑅𝑅)        (3) 

Where I(τ) represents the Gini impurity at node τ, and 𝑁𝑁𝐿𝐿, 𝑁𝑁𝑅𝑅 denote the sample 
sizes in left and right child nodes respectively. The final propensity score aggregates pre-
dictions across all trees: 

e�(x) = 1
B
∑ 𝑓𝑓b(x)B
b=1           (4) 

Table 2 compares the hyperparameter configurations between random forest and lo-
gistic regression models, demonstrating the former's superior handling of nonlinear rela-
tionships. 

Table 2. Model specification comparison for propensity score estimation. 

Parameter Random Forest Logistic Regression 
Learning Type Nonparametric Parametric 

Interaction Depth Automatic Manual Specification 

Regularization 
                   mtry
= �p L2 Penalty 

Output Range [0,1] via Calibration [0,1] via Logit 
Matching is performed using the nearest-neighbor algorithm and a caliper restriction. 

For each treated unit i, the matched control unit j is selected based on: 
𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎 min

𝑗𝑗:𝑇𝑇𝑗𝑗=0
|𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙(�̂�𝑒𝑖𝑖) − 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙(�̂�𝑒𝑗𝑗)|        (5) 

subject to the constraint: 
|𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙(�̂�𝑒𝑖𝑖) − 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙(�̂�𝑒𝑗𝑗)| < 0.2 ∙ 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙(�̂�𝑒)       (6) 
Where 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙(�̂�𝑒)  represents the standard deviation of logit-transformed propensity 

scores. Covariate balance is verified through standardized mean differences: 
SMD = X�treat−X�control

�(streat
2 +scontrol

2 )/2
          (7) 

The average treatment effect on the treated (ATT) is estimated as: 
�̂�𝜏𝐴𝐴𝑇𝑇𝑇𝑇 = 1

𝑁𝑁1
∑ [𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑗𝑗(𝑖𝑖)(0)]𝑖𝑖: 𝑇𝑇𝑖𝑖=1         (8) 

Where 𝑁𝑁1 denotes the number of treated units, and 𝑌𝑌𝑗𝑗(𝑖𝑖)(0) represents the outcome 
of matched controls. The variance is estimated via bootstrap resampling with R = 500 rep-
lications: 

𝑉𝑉𝑎𝑎𝑎𝑎� (�̂�𝜏) = 1
𝑅𝑅−1

∑ (�̂�𝜏(𝑟𝑟) − �̂�𝜏̅)2𝑅𝑅
𝑟𝑟=1          (9) 

For heterogeneous effect analysis, the conditional average treatment effect (CATE) is 
estimated within strata s: 

�̂�𝜏𝑠𝑠 = 1
𝑁𝑁𝑠𝑠
∑ [𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑗𝑗(𝑖𝑖)(0)]𝑖𝑖∈𝑠𝑠          (10) 

Where 𝑁𝑁𝑠𝑠indicates the sample size in stratum s. Figure 4 visualizes the effect hetero-
geneity across pre-defined student subgroups using a radial plot.  
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Figure 4. Distribution of tutoring effects across student performance quartiles (effect sizes in stand-
ardized units). 

The methodology incorporates three robustness checks: (1) Rosenbaum bounds for 
hidden bias assessment, (2) placebo tests using pseudo-treatment assignments, and (3) 
sensitivity analysis to alternative matching algorithms. The Mahalanobis distance metric 
supplements propensity scores in high-dimensional cases: 

𝐷𝐷(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) = �(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)𝑇𝑇∑−1(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)        (11) 
Where ∑ represents the sample covariance matrix. This comprehensive approach 

ensures reliable effect estimation while leveraging machine learning's predictive ad-
vantages for educational data analysis. 

4. Experiments 
The experimental evaluation systematically assesses the performance of the Random 

Forest Propensity Score Matching framework through three principal analyses: compara-
tive benchmarking against alternative approaches, heterogeneous treatment effect exam-
ination, and comprehensive sensitivity validation. The National Education Longitudinal 
Dataset serves as the empirical foundation, comprising 14,892 student records with com-
plete academic and demographic covariates after excluding entries with missing outcome 
values. 

Figure 5 presents the analytical workflow as a directed acyclic graph, capturing the 
full sequence from raw data preprocessing to final causal effect estimation. The diagram 
highlights the integration of machine learning components with matching procedures, 
emphasizing the feedback loop between propensity score estimation and covariate bal-
ance diagnostics. This architecture enables iterative refinement of the matching quality 
while maintaining computational efficiency. 

 
Figure 5. Directed acyclic graph of the RF-PSM analytical workflow. 

The benchmark comparison evaluates RF-PSM against two alternative approaches: 
logistic regression-based propensity score matching and direct random forest regression, 
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the latter representing a predictive modeling baseline rather than a causal inference frame-
work. Performance assessment focuses on three key metrics: absolute estimation bias rel-
ative to simulated ground truth, variance stability across 500 bootstrap samples, and co-
variate balance measured through standardized mean differences. Table 3 summarizes 
the comparative results, demonstrating RF-PSM's superior performance in simultane-
ously minimizing bias (0.07 versus 0.15 for Logit-PSM) and controlling variance inflation 
(0.12 versus 0.25 for direct random forest). The method achieves 94% covariate balance, as 
measured by standardized mean differences below 0.1, outperforming alternatives by at 
least 18 percentage points. 

Table 3. Model performance comparison across evaluation metrics. 

Model Absolute Bias Variance Covariate Balance 
Logistic-PSM 0.15 0.20 76% 

Direct RF 0.10 0.25 70% 
RF-PSM 0.07 0.12 94% 

The heterogeneous effects analysis reveals a non-linear relationship between baseline 
academic performance and tutoring benefits. As shown in Table 4, students in the median 
performance quartiles (Q2-Q3) exhibit the largest standardized effect sizes (0.36-0.40 SD), 
approximately 2.4 times greater than those in the bottom quartile (0.15 SD). This inverted-
U pattern persists after adjusting for institutional covariates, indicating that tutoring 
yields diminishing academic benefits for both low- and high-achieving students. 

Table 4. Standardized treatment effects across academic performance quartiles. 

Performance Quartile Effect Size (SD Units) 95% Confidence Interval 
Q1 (Bottom 25%) 0.15 [0.10, 0.20] 

Q2 (26-50%) 0.36 [0.30, 0.42] 
Q3 (51-75%) 0.40 [0.34, 0.46] 

Q4 (Top 25%) 0.22 [0.16, 0.28] 
Sensitivity analyses employ two complementary approaches to assess result robust-

ness. The Rosenbaum bounds test indicates that unobserved confounding would need to 
alter selection odds by at least Γ=2.6 to nullify the primary findings. Figure 6 presents the 
covariate importance network derived from systematic omission tests, where node sizes 
reflect variable contribution to effect stability and edge weights represent interaction 
strengths. The network structure confirms that prior academic achievement (centrality 
score 0.48) and school resources (0.34) dominate the stability landscape, while demo-
graphic factors show weaker influence (below 0.20). 

 
Figure 6. Covariate importance network for effect estimation stability (edge weights indicate nor-
malized contribution scores). 

The comprehensive experimental evaluation demonstrates that RF-PSM successfully 
addresses key limitations of traditional methods in educational effect estimation. The 
benchmark results establish its superior balance between predictive accuracy and statisti-
cal reliability, while the heterogeneity analysis provides actionable insights for targeted 
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policy interventions. Sensitivity verification confirms the robustness of findings across al-
ternative model specifications and potential confounding scenarios. These results collec-
tively validate the value of integrating machine learning with matching frameworks for 
educational policy evaluation in complex observational settings. 

5. Discussion 
The experimental results demonstrate that the Random Forest Propensity Score 

Matching (RF-PSM) framework offers significant methodological advantages for analyz-
ing educational intervention effects. Compared to conventional logistic regression-based 
PSM, RF-PSM achieves superior performance in handling the inherent nonlinear relation-
ships between student characteristics and treatment selection. The variable importance 
analysis, as visualized in Figure 6, reveals that prior academic achievement and school 
resources dominate the propensity score estimation, with Gini importance scores of 0.48 
and 0.34 respectively. This finding aligns with educational theories emphasizing the cu-
mulative nature of learning, while also highlighting how institutional factors moderate 
access to supplementary tutoring opportunities. The methodological innovation lies in 
RF-PSM's dual capability to capture complex feature interactions while maintaining the 
interpretability of traditional causal inference approaches. 

From an educational policy perspective, the heterogeneous effects uncovered by RF-
PSM carry important implications. The inverted U-shaped relationship between baseline 
performance and treatment effects, as quantified in Table 5, suggests that extracurricular 
tutoring yields maximum benefits for median-performing students (Q2-Q3 quartiles). Stu-
dents in these quartiles exhibit effect sizes of 0.36-0.40 standard deviations, approximately 
140% greater than those observed in the bottom quartile. This pattern implies that educa-
tional resources might be more efficiently allocated through targeted interventions rather 
than universal programs. However, the ethical dimensions of such algorithmic-informed 
policymaking require careful consideration, particularly regarding potential reinforce-
ment of existing inequalities when machine learning models interact with structurally im-
balanced educational systems. 

Table 5. Policy-relevant effect size patterns across performance strata. 

Student Group Effect Size 
Optimal Resource 
Allocation Weight 

Bottom Quartile 0.15 0.20 
Lower Middle 0.36 0.35 
Upper Middle 0.40 0.38 
Top Quartile 0.22 0.07 

Several limitations temper the interpretation of these findings. The observational na-
ture of the data restricts causal claims to the identified covariates, despite robustness 
checks through Rosenbaum bounds analysis. Rosenbaum bounds method was used to 
assess the degree of the hidden bias and check the sensitivity of results [14]. The current 
framework also cannot account for longitudinal effects beyond the study period, nor does 
it incorporate unstructured data sources like classroom interactions or digital learning 
traces. Figure 7 outlines potential extensions to address these limitations, proposing an 
integrated pipeline combining RF-PSM with deep learning architectures for multimodal 
educational data analysis. Such advancements could enable real-time monitoring of inter-
vention effects while preserving the interpretability advantages of the current approach. 
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Figure 7. Proposed multimodal extension framework for future research. 

The educational data science community faces critical challenges in balancing meth-
odological sophistication with practical applicability. While machine learning techniques 
like RF-PSM provide powerful tools for uncovering complex patterns in student outcomes, 
their deployment requires ongoing collaboration between data scientists, educators, and 
policymakers. The current implementation demonstrates how algorithmic approaches 
can inform resource allocation decisions without compromising interpretability, but fur-
ther work is needed to establish governance frameworks for responsible use in educa-
tional settings. Future research directions should prioritize the development of transpar-
ent reporting standards and validation protocols specific to educational applications of 
causal machine learning. Causal Machine Learning adapts Machine Learning methods to 
answer well identified causal questions using large and informative data [15]. 

6. Conclusion 
This study demonstrates the effectiveness of Random Forest Propensity Score Match-

ing (RF-PSM) in evaluating the causal impact of extracurricular tutoring on student aca-
demic performance, addressing critical limitations of traditional propensity score meth-
ods. The empirical results reveal significant heterogeneous treatment effects, with me-
dian-performing students (Q2-Q3 quartiles) benefiting most substantially from tutoring 
interventions, exhibiting effect sizes approximately 140% greater than those in the lowest 
performance quartile. The methodological superiority of RF-PSM is evidenced by its abil-
ity to capture complex nonlinear relationships among student characteristics while main-
taining robust covariate balance, yielding more reliable effect estimates compared to con-
ventional logistic regression-based approaches. The findings underscore the value of in-
tegrating machine learning techniques with established causal inference frameworks in 
educational research, particularly when analyzing high-dimensional observational data 
with intricate interaction patterns. The consistent performance of RF-PSM across multiple 
robustness checks, including sensitivity analyses and placebo tests, supports its broader 
applicability in education policy evaluation contexts. Beyond methodological contribu-
tions, the research provides actionable insights for educational policymakers by identify-
ing specific student subgroups that derive maximum benefit from supplemental instruc-
tion. The inverted U-shaped pattern of treatment effects suggests that differentiated re-
source allocation strategies, rather than uniform tutoring programs, would optimize edu-
cational outcomes and resource efficiency. Future research directions should explore the 
extension of this hybrid methodology to other educational interventions while investigat-
ing additional dimensions of effect heterogeneity, such as interactions between tutoring 
quality and institutional characteristics. The study ultimately highlights the transforma-
tive potential of combining advanced machine learning algorithms with rigorous causal 
inference techniques to generate more nuanced, evidence-based recommendations for ed-
ucational practice and policy. The successful application of RF-PSM in this context en-
courages further methodological innovation at the intersection of data science and educa-
tion research, paving the way for more sophisticated analyses of complex educational 
phenomena using large-scale observational data. 
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