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Abstract: The digital economy is reshaping regional development, yet measuring its complex im-
pact remains difficult due to multidimensional digital factors and regional heterogeneity. This study 
proposes a modular, knowledge-driven framework to analyze how digital economic development 
affects regional growth, focusing on the Yangtze River Delta. A structured knowledge base integrat-
ing economic, infrastructure, platform-related, and policy data supports semantic reasoning across 
40 cities. The system combines fuzzy clustering, SEM, and spillover simulation, incorporating a per-
sonalization module to account for differences among urban contexts. Empirical validation over 10 
years reveals key digital drivers of regional GRP through productivity and innovation channels. 
The framework offers interpretable, scalable insights for policy and planning, with future work ex-
tending to real-time and national applications. 
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1. Introduction 
The digital economy has emerged as a transformative paradigm reshaping the fabric 

of modern economic systems through the integration of intelligent technologies, data-cen-
tric processes, and interconnected platforms. As the conceptual foundation of Industry 
4.0, the digital economy redefines value creation by leveraging artificial intelligence, the 
Internet of Things (IoT), and advanced information networks to enhance productivity, 
efficiency, and system-wide responsiveness [1]. These technological shifts are not merely 
instrumental; they also drive a reconfiguration of institutional, organizational, and spatial 
structures, positioning digitalization as a key enabler of industrial upgrading and societal 
transformation. 

Recent literature has underscored the mediating role of governance in the digital 
economy's capacity to support energy transition, sustainable growth, and inclusive devel-
opment. Shahbaz et al. demonstrated that the digital economy's contributions are magni-
fied in institutional contexts characterized by strong governance and regulatory capacity, 
suggesting that digital transformation is as much a political-economic process as it is a 
technological one [2]. At a global level, the rise of digital currencies and central bank dig-
ital currencies (CBDCs) also highlights how digital infrastructures interact with monetary 
systems and risk regulation, further embedding digital mechanisms into macroeconomic 
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frameworks [3]. As discussed by Wang and Shao, this integration further accelerates en-
trepreneurship, lowers transaction costs, and improves energy efficiency by enabling real-
time optimization of resource use [4]. 

In the Chinese context, the digital economy has been shown to contribute to high-
quality energy development through structural innovation, enabling cleaner, more effi-
cient, and better-coordinated energy systems [5]. Despite its national-scale significance, 
digital development exhibits markedly heterogeneous regional manifestations, due to 
variations in local conditions and policy responses. Differences in factor endowments, in-
dustrial foundations, and policy responsiveness result in spatial asymmetries and une-
qual growth trajectories, particularly across economically dynamic regions such as the 
Yangtze River Delta (YRD) [6]. These disparities are often reinforced by entry barriers, 
institutional inertia, and uneven digital infrastructure penetration, which collectively in-
fluence a region's ability to absorb, adapt, and amplify digital innovations. 

At the same time, the interplay between digital transformation and environmental 
sustainability introduces both opportunities and constraints for regional development. In 
the African context, Namahoro et al. showed that while economic growth and digital 
adoption could support renewable energy development, they also risk reinforcing CO₂ 
emissions unless aligned with decarbonization strategies [7]. Similar policy tensions are 
evident in urban economies attempting to integrate supply chain innovations and strate-
gic commodities through digital means, especially in pandemic and post-pandemic recov-
ery phases [8]. For instance, advanced digital modeling and intelligent coordination tech-
nologies in the manufacturing sector have demonstrated how digital transformation can 
optimize resource allocation while also requiring substantial energy and data infrastruc-
ture [9,10]. These findings echo the challenge of balancing economic efficiency with long-
term resilience and environmental responsibility—an issue of particular relevance to rap-
idly urbanizing and industrializing regions like the YRD. 

Furthermore, the digital economy is intricately linked with innovation dynamics. As 
shown by Shen et al., economic growth target constraints can either spur or suppress 
green technological innovation depending on how digital infrastructure interacts with 
policy mandates [11]. Likewise, urban land expansion and the spatial distribution of 
growth are increasingly mediated by digital tools, as Mahtta et al. demonstrated in their 
study of 300+ global cities, including those in East Asia. They identified population and 
economic growth, amplified by digital systems, as central drivers of urban spatial evolu-
tion [12]. In this context, digital transformation extends beyond cyberspace and is increas-
ingly embedded in land use, mobility, governance, and urban form. 

The YRD region offers an exemplary testbed for analyzing the regional economic 
consequences of digitalization. Chenhong and Guofang examined the spatiotemporal pat-
terns of urban resilience in the YRD and found significant correlations between digital 
capacity, policy responsiveness, and adaptive governance, suggesting that digital systems 
not only enable economic output but also bolster systemic flexibility in the face of external 
shocks [13]. Comparisons with global delta systems, such as the Mississippi River Delta, 
further reveal how digitally mediated interactions between natural systems and human 
activities can enhance both economic and ecological performance, reinforcing the need for 
integrated regional management frameworks [14]. Moreover, complex network analyses 
of air quality indices in the YRD, as explored by Liu et al., have shown how digital moni-
toring and data integration can improve environmental diagnostics and inform urban eco-
nomic strategies [15]. 

Against this backdrop, this study proposes a hybrid, knowledge-driven analytical 
framework to examine how digital economic development influences regional economic 
growth in the YRD. By integrating a structured knowledge graph with causal inference 
modules, such as structural equation modeling and policy-sensitive spillover analysis, the 
research aims to uncover both the direct and mediated pathways through which digital 
transformation shapes regional growth dynamics. The framework emphasizes interpret-
ability, modularity, and empirical grounding, offering both theoretical contributions to 
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regional digital economics and practical insights for policymakers striving to align digital 
strategy with coordinated, sustainable development. 

2. Related Works 
Recent studies on the Yangtze River Delta (YRD) have emphasized the complex in-

terrelation between digitalization, environmental governance, and spatial economic dy-
namics. Wang et al. analyzed the impact of ICT agglomeration on carbon emis-
sions in the YRD using spatial econometric models and found that digital cluster-
ing can significantly reduce emissions through energy optimization and knowledge 
spillover, highlighting ICT's dual role in promoting economic efficiency and ecological 
sustainability [16]. Complementing this, Li et al. employed ecological trade-off modeling 
to examine land-use allocation strategies and found that economic development in the 
YRD must carefully balance carbon intensity with digital infrastructure expansion [17]. 

To support digital-region modeling, knowledge graphs have emerged as a robust 
methodology for representing structured semantic relationships across domains. Zhong 
et al. conducted a comprehensive survey on automatic knowledge graph construction, 
outlining methods such as rule-based extraction, deep learning-driven relation modeling, 
and graph population pipelines applicable to multi-source economic datasets [18]. Shen 
et al. further reviewed knowledge graph completion techniques including link prediction, 
path reasoning, and embedding-based inference, providing a theoretical foundation to 
ensure continuity and completeness in economic knowledge representation [19]. In prac-
tical applications, Hao et al. constructed a remote sensing-based knowledge graph inte-
grating spatial data and attribute relations, which has implications for urban-scale eco-
nomic visualization and planning [20]. Zhu et al. extended this approach by investigating 
multi-modal knowledge graph construction that incorporates images, texts, and struc-
tured records, enabling more holistic regional modeling with heterogeneous data sources 
[21]. Zeng et al. applied similar knowledge graph methodologies to drug discovery, 
demonstrating how domain-specific ontologies and reasoning mechanisms can enhance 
decision-making and offering a transferable paradigm for regional policy analytics [22]. 

Structural Equation Modeling (SEM) has been widely adopted for uncovering latent 
relationships and testing multi-dimensional hypotheses in regional economic studies. 
Harlow outlined the basic logic of SEM, emphasizing its suitability for complex systems 
with observable and latent variables [23]. Cheung et al. provided methodological guide-
lines for reporting reliability and discriminant validity, key to ensuring that structural 
paths in digital economy models are statistically robust [24]. Hair et al. elaborated on par-
tial least squares (PLS-SEM), arguing that it is particularly appropriate for exploratory 
models dealing with non-normal distributions and reflective-formative constructs com-
mon in regional datasets [25]. Roemer et al. introduced the HTMT2 criterion for improved 
discriminant validity assessment in SEM, enabling more precise boundary specification 
between overlapping digital economy constructs [26]. Whittaker and Schumacker pro-
vided a beginner-friendly guide to SEM implementation, further validating its accessibil-
ity for interdisciplinary policy applications [27]. 

Beyond structural modeling, macroeconomic policy evaluation in digital transfor-
mation contexts often relies on dynamic simulation techniques. Sun et al. applied a Dy-
namic Stochastic General Equilibrium (DSGE) model to simulate policy impacts on the 
green transition of China's building sector, reflecting how simulation tools can forecast 
structural adjustment effects under digital policy shocks [28]. Yang et al. built a system 
dynamics model to optimize coal capacity deviation under economic, environmental, and 
security constraints, underscoring simulation's utility in balancing competing regional de-
velopment objectives [29]. Amin and Dogan used dynamic simulations to analyze the role 
of economic policy uncertainty in China's energy-environment nexus, revealing feedback 
loops between digital policy decisions and environmental externalities [30]. 
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Sensitivity analysis also plays a vital role in systems modeling and policy support. 
Razavi et al. emphasized its necessity in interpreting simulation outputs and prioritizing 
policy levers, particularly in high-dimensional spaces like digital economic systems [31]. 
Finally, while Collins et al. reviewed robotic physics simulators, their discussion on hy-
brid simulation environments and model fidelity offers conceptual parallels for designing 
integrated simulation frameworks in economic policy modeling [32]. 

3. Framework Design and Implementation 
To empirically investigate how digital economic development drives regional eco-

nomic growth within the Yangtze River Delta (YRD), we propose an integrated frame-
work that combines semantic knowledge representation, structural causal modeling, and 
policy-aware simulation. The framework is designed to capture both the structural com-
plexity and the spatial heterogeneity of digital-regional interactions, supporting interpret-
able inference across multiple analytical stages. It consists of three principal components: 
a domain-specific digital economy knowledge graph, a multi-layer reasoning engine that 
integrates structural equation modeling (SEM) with graph-based spillover modeling, and 
a microservice-oriented implementation architecture that enables modular, scalable de-
ployment across analytical and policy environments. 

3.1. Construction of the Digital Economy Knowledge Graph 
The knowledge graph (KG) serves as the semantic backbone of the system, enabling 

structured representation of digital economic constructs, regional attributes, and their in-
terdependencies. The graph schema consists of five main entity classes, Digital Infrastruc-
ture, Platform Economy, Digital Governance, Regional Indicators, and Policy Instruments, 
and eleven types of relations such as enhances, regulated by, drives, and diffuses to. 

Raw data were collected from statistical yearbooks, enterprise-level platform reports, 
municipal development plans, and publicly available APIs. Entities were extracted using 
fine-tuned BERT models for named entity recognition (NER), followed by rule-based re-
lation parsing. Graph population was implemented using Neo4j, incorporating RDF triple 
support for semantic querying. As shown in Figure 1 and Table 1. 

 
Figure 1. Ontology Schema of the Digital Economy Knowledge Graph. 

Table 1. Core Entity and Relation Statistics in the Knowledge Graph. 

Entity Class Example Entity Count 
Digital Infrastructure 5G Coverage Ratio, Data Centers 96 

Platform Economy E-commerce Index, Fintech Services 74 
Digital Governance Open Data Policy, Online Service Level 51 
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Regional Indicators GRP, Labor Productivity, Patent Output 67 
Policy Instruments Subsidy Scheme, Innovation Grant 39 

Total Relations e.g., drives, regulated by 431 
This knowledge graph supports semantic reasoning, node embedding for similarity 

calculations, and traversal-based policy path queries. 

3.2. Multi-Layer Causal Inference System 
We developed a four-stage inference engine to operationalize causal relationships 

between digital economic dimensions and regional economic outcomes. Each stage corre-
sponds to a distinct analytical layer: digital indicator clustering, latent construct modeling, 
inter-city diffusion analysis, and adaptive policy conditioning. 

3.2.1. Digital Indicator Clustering and Latent Factor Modeling 
To reduce dimensionality and improve interpretability, over 40 original indicators 

were clustered into three latent constructs: Digital Infrastructure, Platform Economy Ac-
tivity, and Governance Capacity. Principal Component Analysis (PCA) followed by Ex-
ploratory Factor Analysis (EFA) was conducted on a cleaned panel dataset of 41 cities × 
10 years (2013–2023). 

KMO (0.853) and Bartlett's test (p < 0.001) validated factor adequacy. Loadings above 
0.70 were retained. The extracted latent scores form the input variables for structural mod-
eling. As shown in Table 2. 

Table 2. Rotated Component Matrix for Latent Construct Extraction. 

Variable Infrastructure Platform Governance 
Broadband Access Rate 0.84 – – 

Data Center Investment (bn CNY) 0.81 – – 
E-Commerce Retail Index – 0.88 – 

Fintech Penetration – 0.75 – 
Online Government Services Index – – 0.81 

Digital Policy Publication Frequency – – 0.74 

3.2.2. SEM-Based Causal Path Estimation 
Structural Equation Modeling (SEM) was employed to test the mediating and direct 

effects of digital constructs on Gross Regional Product (GRP). The SEM structure includes 
both direct paths (e.g., Platform → GRP) and indirect paths via mediators such as Inno-
vation Output and Labor Productivity. 

Model fit was confirmed with SRMR = 0.058, CFI = 0.921, and χ²/df = 2.34. All path 
coefficients were significant at p < 0.01. As shown in Figure 2 and Table 3. 
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Figure 2. SEM Path Diagram of Digital Economy Effects on GRP. 

Table 3. Standardized SEM Path Coefficients. 

Pathway Coefficient p-value 
Digital Infrastructure → Innovation Output 0.47 <0.001 

Platform Economy → Labor Productivity 0.41 <0.001 
Governance Capacity → GRP (direct) 0.29 0.002 

Innovation Output → GRP 0.50 <0.001 
Labor Productivity → GRP 0.38 <0.001 

3.2.3. Inter-City Digital Spillover Simulation 
To account for cross-regional digital influence, we constructed a weighted city-to-

city spillover network based on similarity in digital profiles and historical innovation cor-
relation. Cosine similarity of GraphSAGE embeddings, which capture structural and fea-
ture-based similarities in graph nodes, was used to derive directed edges, weighted by 
enterprise migration and talent flow data. 

A spillover-enhanced GRP simulation was conducted using graph-based iterative 
propagation algorithms, with damping coefficients calibrated against 2017–2020 observed 
data. Simulation reduced RMSE by 35% over baseline. As shown in Table 4. 

Table 4. Top-10 Digital Spillover Hubs (Ranked by Outward Influence Index). 

City Spillover Index Affected Cities 
Hangzhou 0.891 16 
Shanghai 0.854 14 
Suzhou 0.806 12 
Nanjing 0.785 11 

3.2.4. Policy-Sensitive Personalization Layer 
To adapt predictions to local administrative realities, we built a rule-based policy 

conditioning module grounded in the KG's regulated by and amplified through relations. 
For each city, a policy reactivity score was computed from historical fiscal responsiveness, 
innovation subsidy uptake, and participation in national digital programs. 
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Cities with high responsiveness (e.g., Shanghai, Wuxi) were assigned multiplicative 
adjustment factors to their latent variable scores, thereby improving model alignment 
with observed post-policy outcomes, improving alignment with observed post-pol-
icy outcomes. Scenario testing revealed distinct economic outcomes when comparing 
infrastructure-prioritized versus platform-oriented digital policy pathways. As shown in 
Table 5 and Figure 3. 

 
Figure 3. Policy Conditioning Workflow for Simulation Personalization. 

Table 5. Scenario-Based GRP Response under Differentiated Policy Stimuli. 

Policy Stimulus Tier 1 City (Avg) Tier 2 City Tier 3 City 
Digital Infrastructure +4.7% +4.3% +2.8% 

Platform Ecosystem Push +3.9% +5.1% +4.2% 
Governance Reform +5.3% +4.6% +3.1% 

3.3. System Architecture and Deployment 
The entire analytical pipeline is implemented within a cloud-native microservice 

framework, ensuring modularity, scalability, and real-time simulation capacity. The sys-
tem comprises three functional layers: 

Data Layer: Relational (PostgreSQL) + Graph (Neo4j) hybrid database, integrated via 
ETL processes; Inference Layer: Python-based SEM engine (via semopy), graph analytics 
(via NetworkX), and simulation manager; Interface Layer: Web dashboard with policy 
scenario controls, city profile visualizations, and comparative forecasting output. As 
shown in Figure 4. 
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Figure 4. System Architecture of the Digital Regional Growth Inference Platform. 

The average model execution time is less than 2.7 seconds per complete city-level 
inference cycle, enabling real-time policy feedback scenarios. 

4. Digital Economy Reasoning Modules for Regional Growth 
To achieve interpretable, data-driven analysis of how the digital economy affects re-

gional economic growth in the Yangtze River Delta (YRD), we operationalize the pro-
posed framework through four core reasoning modules. These modules reflect the hier-
archical logic of digital transformation, beginning with the identification of digital drivers 
and progressing through regional diffusion modeling and policy alignment simulation. 
Each module is semantically grounded in the knowledge graph and computationally im-
plemented through integrated statistical and graph-theoretic reasoning techniques. 

4.1. Module I: Digital Factor Mapping via Fuzzy Semantic Similarity 
The first module identifies core digital economy drivers from heterogeneous city-

level indicators using a fuzzy semantic matching mechanism. Each indicator is embedded 
into a latent semantic space derived from the knowledge graph's digital economy ontol-
ogy, enabling partial matching even in the presence of incomplete or ambiguous data. 

Cities are vectorized along three digital dimensions—Infrastructure, Platform-Ori-
ented Industrial Application, and Governance—each aligned with corresponding latent 
constructs previously identified. A cosine similarity matrix is constructed to compare city 
profiles against prototype digital archetypes derived from expert-labeled training sam-
ples. Indicators are weighted using a modified TF-IDF schema, where term frequency re-
flects the prevalence of indicators across cities, and inverse document frequency is ad-
justed by each indicator’s structural impact score within the knowledge graph topology. 
As shown in Figure 5. 

https://pinnaclepubs.com/index.php/PAPPS


Pinnacle Academic Press Proceedings Series https://pinnaclepubs.com/index.php/PAPPS 
 

Vol. 4 (2025) 57  

 
Figure 5. Heatmap of Digital Driver Strength Across YRD Cities. 

This approach allows identification of city-specific digital profiles and facilitates the 
mapping of each city into a digital development quadrant (e.g., “strong infrastructure but 
weak application”). The output of this module feeds directly into the subsequent struc-
tural modeling. 

4.2. Module II: Structural Equation-Based Causal Path Inference 
The second module translates the mapped digital indicators into causal hypotheses 

using a multi-path structural equation model (SEM). Building upon the latent constructs 
extracted earlier, this module quantifies how different digital factors influence regional 
economic outcomes through direct and mediated paths. 

The structural model estimates paths from: 
Digital Infrastructure →  Innovation Output →  Gross Regional Product (GRP); 

Platform Economy Activity → Labor Productivity → GRP; Digital Governance → In-
stitutional Trust → GRP. 

Indirect effects are computed using Sobel tests, and path coefficients are interpreted 
with bootstrapped confidence intervals. The model is evaluated on fit indices (e.g., SRMR 
< 0.08, AVE > 0.5, HTMT < 0.85), ensuring internal consistency and discriminant validity. 
As shown in Figure 6. 

 
Figure 6. Causal Path Model Linking Digital Constructs to GRP via Mediators. 
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This module reveals that digital infrastructure has both direct and indirect effects on 
regional growth, while platform activity mainly acts through labor efficiency gains. Gov-
ernance effects are more moderated and vary by policy alignment and local administra-
tive responsiveness. 

4.3. Module III: Regional Spillover and Synergy Simulation 
To capture spatial interdependencies and knowledge diffusion within the YRD, the 

third module simulates digital spillovers using a weighted directed graph based on city-
pair semantic similarity and economic distance. Spillover strength is modeled using a 
composite index that integrates: 

Graph-path co-occurrence frequency; Temporal co-evolution in digital indices; Inter-
city migration and enterprise co-registration data. 

A modified PageRank algorithm is applied to derive digital centrality scores, which 
predict the extent to which a city can influence others through digital interactions. Simu-
lation experiments demonstrate that high-centrality cities such as Hangzhou and Suzhou 
generate markedly asymmetric externalities, particularly in the platform economy dimen-
sion. As shown in Figure 7. 

 
Figure 7. Spillover Network of Digital Influence in the Yangtze River Delta. 

The module outputs a growth diffusion matrix that can be used to forecast secondary 
gains in peripheral cities under digital integration scenarios. This has implications for co-
ordinated regional development strategies. 

4.4. Module IV: Policy Alignment and Localized Adjustment 
The final module integrates policy metadata and local contextual variables to adjust 

model outputs according to city-level policy sensitivity. Each city is classified into a pol-
icy-response cluster using decision-tree classification based on variables such as: 

Smart city project intensity; Fiscal digital investment ratio; Local legislation on digital 
infrastructure. 

Adjustment weights are applied to growth simulations through a rule-based infer-
ence engine interfacing with the knowledge graph. For example, cities with strong local 
policy implementation capacity and high alignment with national digital directives (e.g., 
Shanghai, Nanjing) receive a policy amplification coefficient, whereas lagging cities re-
ceive diffusion-based spillover adjustments only. 

This personalization process ensures that final growth estimates reflect not only dig-
ital input strength but also both policy implementation capacity and institutional recep-
tiveness. 

This module also enables “what-if” policy simulation scenarios, such as projecting 
GRP impacts under a hypothetical platform economy acceleration initiative or broadband 
infrastructure investment scheme. 

Taken together, these four reasoning modules provide a transparent, multi-perspec-
tive view of how the digital economy shapes regional growth across cities with distinct 
profiles, enabling both diagnosis and targeted intervention design. Their outputs serve as 
the empirical basis for the evaluation phase presented in the following chapter. 
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5. Evaluation of the Digital Growth Reasoning System 
To validate the accuracy, interpretability, and policy relevance of the proposed digi-

tal economy reasoning system, a multi-level evaluation was conducted across empirical 
datasets, simulation outputs, and expert-guided validation. The evaluation design em-
phasizes model fidelity, causal robustness, spillover accuracy, and policy sensitivity. We 
adopted a mixed-methods approach, combining quantitative benchmarking from empir-
ical datasets and simulation outputs with qualitative expert reviews, to assess the system's 
performance in modeling regional growth dynamics within the Yangtze River Delta 
(YRD). 

5.1. Dataset and Experimental Setup 
The system was evaluated using a panel dataset comprising 41 core cities in the YRD, 

spanning the period 2013–2023. The dataset integrates multiple sources: National Bureau 
of Statistics, provincial digital economy annual reports, local government open data plat-
forms, and web-scraped indicators from leading digital platforms. The variables used for 
structural modeling, digital driver mapping, and spillover estimation were standardized 
and cleaned to remove multicollinearity and missingness. As shown in Table 6. 

Table 6. The Summary Statistics of the Evaluation Dataset. 

Variable Category Mean Std. Dev Min Max 
Digital Infrastructure Index 0.612 0.152 0.29 0.91 

Platform Economy Activity Index 0.488 0.164 0.21 0.85 
Digital Governance Score 0.552 0.137 0.33 0.89 

Innovation Output (Patents per 10k) 46.21 23.35 12.3 102.6 
GRP per Capita (10k CNY) 14.3 4.6 6.8 29.1 

The dataset was split into a training subset (2013–2019) for model fitting and a testing 
subset (2020–2023) for out-of-sample simulation. Expert validation was conducted using 
8 senior regional economists from Yangtze Delta Research Institute and provincial plan-
ning commissions. 

5.2. Model Performance: SEM Accuracy and Path Validity 
The structural equation model was evaluated using standard SEM performance met-

rics. Model fit indices indicate strong overall fit: SRMR = 0.062, NFI = 0.913, and CFI = 
0.927. All major paths exhibited statistically significant coefficients (p < 0.01), supporting 
the hypothesized causal structure. As shown in Table 7. 

Table 7. SEM Path Coefficients and Significance. 

Pathway Coefficient Std. Error t-Value 
Digital Infrastructure → Innovation 

Output 
0.462 0.072 6.42 

Platform Economy → Labor 
Productivity 

0.389 0.066 5.91 

Digital Governance → Institutional 
Trust 

0.337 0.081 4.16 

Innovation Output → GRP 0.514 0.074 6.95 
Labor Productivity → GRP 0.472 0.068 6.76 
All the HTMT values fell below 0.85, indicating strong discriminant validity. Com-

posite reliability scores (CR) ranged from 0.79 to 0.89, confirming internal consistency 
across latent constructs. 
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5.3. Digital Spillover Simulation Validation 
The accuracy of the digital spillover module was evaluated by comparing predicted 

spillover-induced GRP increments to actual observed changes in the test set (2020–2023). 
Simulation errors were measured using RMSE and Mean Absolute Percentage Error 
(MAPE), compared against a control model with no inter-city interaction logic. As shown 
in Table 8. 

Table 8. Spillover Forecasting Accuracy. 

Model Variant RMSE (GRP Growth) MAPE (%) 
With Spillover Logic 0.324 7.81 

Baseline (No Spillover) 0.513 13.27 
The inclusion of the knowledge-graph-based spillover mechanism resulted in a 41% 

reduction in RMSE and a nearly 6% reduction in MAPE, indicating that inter-city digital 
diffusion significantly enhances predictive power. As shown in Figure 8. 

 
Figure 8. Observed vs Predicted GRP (2020–2023) in Top 10 Spillover-Dependent Cities. 

5.4. Policy Scenario Simulation and Sensitivity Testing 
The system's policy personalization module was tested through scenario simulation. 

Three digital policy strategies were designed: 
Infrastructure Acceleration (Policy A), 30% increase in broadband access and server 

density; Platform Incentivization (Policy B), tax incentives for e-commerce and digital ser-
vices; Governance Reform (Policy C), open data laws and regional integration platforms. 

Simulation results showed differentiated impacts across city clusters. As shown in 
Table 9: 

Table 9. Projected GRP Increase under Policy Simulation (%). 

City Tier Policy A Policy B Policy C 
Tier 1 (e.g. Shanghai) +4.6% +3.8% +5.2% 

Tier 2 (e.g. Suzhou, Hangzhou) +5.1% +4.7% +6.4% 
Tier 3 (e.g. Xuancheng) +2.9% +4.5% +3.2% 

These results demonstrate the utility of the system in assessing not only average pol-
icy impact but also its heterogeneity across administrative and economic baselines. Sensi-
tivity analysis further revealed that the results remain robust within a ±10% range of input 
data variation, with standard deviations of GRP projections below 0.7%. 

5.5. Expert Validation and Usability Assessment 
To assess real-world interpretability and trustworthiness, experts were invited to re-

view the system's output for 15 cities across different tiers. Review criteria included logical 
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transparency, policy actionability, and growth estimation plausibility. Evaluation was 
conducted via the Likert scale scoring (1 = Poor; 5 = Excellent). As shown in Table 10. 

Table 10. Expert Panel Assessment Scores (n = 8 experts). 

Evaluation Dimension Mean Score Std. Dev 
Causal Path Transparency 4.58 0.33 

Policy Scenario Interpretability 4.42 0.41 
Growth Prediction Plausibility 4.47 0.38 

More than 87% of expert ratings scored the system 4 or above across all categories. 
Notably, experts emphasized the advantage of the multi-path interpretability in explain-
ing why certain cities exhibited weaker or stronger growth reactions to the same digital 
intervention. 

This multi-angle evaluation confirms that the digital growth reasoning system offers 
high accuracy in regional prediction, logical traceability of model outputs, and meaning-
ful alignment with policymaking contexts. It also highlights the value of integrating 
graph-based semantic modeling with statistical inference to bridge the gap between digi-
tal metrics and economic outcomes. In the next chapter, we further discuss the implica-
tions and limitations of the system, and propose future research directions. 

6. Discussion 
This study presents a multi-layered, knowledge-driven analytical system for under-

standing the mechanisms through which digital economy development affects regional 
economic growth, with a specific application to the Yangtze River Delta (YRD). The inte-
gration of the semantic knowledge graph construction, structural equation modeling, and 
spillover simulation offers both methodological and theoretical advancements in regional 
digital economics. By embedding domain-specific digital economy concepts into a struc-
tured ontology and enabling semantic reasoning over multi-source indicators, the system 
overcomes a key limitation in existing studies. Such studies often treat digital factors as 
aggregated, exogenous variables detached from local institutional and industrial struc-
tures [16,18]. Instead, our approach formalizes digital constructs as interconnected entities 
within a graph model, allowing for context-aware reasoning, cross-variable inference, and 
localized policy interpretation. 

From a methodological perspective, this research demonstrates the feasibility and 
benefits of combining knowledge graph techniques with causal inference frameworks, a 
direction that remains underexplored in economic modeling. While prior works on 
knowledge graph completion and multi-modal semantic integration have shown promise 
in biomedical and geographic domains, their application to regional development policy 
remains limited. By adapting these techniques to economic indicator systems and aligning 
them with structural modeling logic, this study contributes a replicable approach to hy-
brid reasoning in policy-relevant contexts [17,20]. The incorporation of fuzzy semantic 
similarity in Module I and graph-augmented spillover simulation in Module III addresses 
the longstanding issue of spatial and data heterogeneity in digital economy measurement, 
particularly in complex, multi-tiered regions like the YRD [14,15]. 

Unlike conventional SEM or machine learning approaches that assume a homogene-
ous response to digital inputs, our framework dynamically adjusts output forecasts based 
on metadata related to governance capacity, regional policy incentives, and administra-
tive readiness. This innovation is especially relevant for regions undergoing digital infra-
structure transformation, as seen in studies of post-pandemic building adaptations and 
energy system optimization in urban environments [33,34]. These studies highlight the 
importance of localized policy responses to digital advancements, tailored to regional 
needs and governance structures. This approach makes the system not only statistically 
robust but also interpretable in policy terms, which is crucial for policy experimentation 
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in high-stakes contexts, such as digital transformation strategies, cross-provincial integra-
tion, and smart infrastructure deployment [26,27]. As emphasized by Razavi et al. in their 
review of sensitivity analysis, systems models must account for contextual variability to 
be decision-supportive and policy-resilient, a requirement met by the rule-conditioning 
module proposed in this study [29]. 

In addition, the integration of simulation-based inter-city digital spillovers provides 
new insight into the spatial externalities of digital investment. While earlier studies have 
shown the existence of ICT-induced productivity gains at the regional level, this study 
models the dynamic diffusion of these gains via knowledge and enterprise networks, of-
fering a more granular understanding of regional convergence and divergence under dig-
ital influence [5,14]. The simulation results reveal that Tier-1 and Tier-2 cities such as 
Shanghai, Hangzhou, and Suzhou function as digital hubs that radiate growth effects 
through infrastructural and institutional channels, a finding consistent with theories of 
urban network centrality and digital capital accumulation [6,11]. 

Finally, the proposed system enhances model transparency and interpretability, ad-
dressing a critical weakness in current data-driven models. While black-box models such 
as deep neural networks or random forests may offer high predictive accuracy, they often 
fall short in providing actionable policy insight. Our use of structural equations and 
knowledge graph reasoning aligns with the growing demand for explainable AI in gov-
ernance and policy-making, as discussed by Cheung et al. and Whittaker & Schumacker 
in the context of SEM best practices [22,25]. 

Nonetheless, this research is not without limitations. While the knowledge base in-
corporates a wide range of digital economy indicators and regional variables, its coverage 
is constrained by data availability and standardization issues, particularly for emerging 
digital fields such as blockchain or automated governance mechanisms. In addition, alt-
hough the SEM-based causal model accounts for multiple mediators and feedbacks, it re-
mains a static representation; future studies could enhance temporal realism through dy-
namic simulation frameworks such as DSGE or agent-based modeling [26,28]. Moreover, 
the spillover logic, while empirically validated, assumes symmetry in diffusion potential, 
which may underestimate institutional frictions, infrastructural mismatches, or organiza-
tional silos that affect cross-city collaboration in practice. 

7. Conclusion 
This paper develops and validates a modular analytical system to model the driving 

effects of digital economy development on regional economic growth, using the Yangtze 
River Delta (YRD) as a case study. Grounded in a semantically structured digital 
knowledge graph and enhanced by multi-stage inference techniques, the system demon-
strates strong empirical accuracy, interpretability, and policy relevance. Through the com-
bination of fuzzy semantic indicator mapping, structural equation modeling, graph-based 
spillover simulation, and policy conditioning, the framework captures both the statistical 
and institutional dimensions of digital-regional dynamics. 

Empirical results across a decade of panel data from 41 YRD cities confirm the signif-
icant and multi-pathway influence of digital infrastructure, platform economy activity, 
and governance capacity on regional GRP performance. The system also reveals hetero-
geneous policy responsiveness, with central cities exhibiting higher spillover potential 
and stronger alignment with national digital strategies. Scenario simulations further show 
that targeted digital interventions, particularly those enhancing governance quality and 
platform interconnectivity, can yield measurable gains in per capita economic output. 

This research contributes to the literature by providing a hybrid, interpretable mod-
eling approach that bridges semantic AI and causal inference within a regional economic 
framework. It offers a replicable method for other megaregions undergoing digital trans-
formation and a decision-support tool for policy-makers seeking to design adaptive, evi-
dence-based digital economy strategies. 
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Future work will focus on expanding the system's temporal resolution through dy-
namic simulation (e.g., system dynamics or DSGE models), integrating firm-level behav-
ioral data from digital platforms, and extending the policy modeling framework to in-
clude fiscal, educational, and environmental feedback loops. Ultimately, this study af-
firms the value of integrating digital knowledge systems with regional planning science, 
paving the way for more intelligent, equitable, and sustainable territorial development in 
the digital age. 
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