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Abstract: This study presents a comprehensive empirical evaluation of chart reasoning capabilities 
in multimodal large language models (MLLMs), examining critical factors that influence perfor-
mance accuracy across diverse visualization types. Through systematic experimentation with six 
leading MLLMs including GPT-4V, LLaVA, and BLIP-2, we analyze their proficiency in interpreting 
statistical charts, graphs, and data visualizations. Our methodology encompasses a curated dataset 
of 2,400 charts spanning bar graphs, line plots, scatter plots, pie charts, and complex multi-panel 
visualizations, each annotated with ground-truth reasoning tasks. Performance evaluation reveals 
significant variations based on chart complexity, data density, textual annotation presence, and vis-
ual design elements. Statistical analysis demonstrates that model accuracy decreases substantially 
with increased data point density (correlation coefficient: -0.73) and increased visual complexity. 
The study identifies optimal configurations for different chart types and provides actionable in-
sights for improving MLLM deployment in data analysis applications. Our findings contribute to 
understanding multimodal AI limitations and establishing benchmarks for future chart comprehen-
sion research. 

Keywords: multimodal large language models; chart reasoning; visual understanding; data visual-
ization 
 

1. Introduction 
1.1. Background and Motivation of Multimodal Chart Understanding 

The proliferation of data visualization in digital communications has created unprec-
edented demands for artificial intelligence systems capable of interpreting and reasoning 
about charts and graphs. Modern business intelligence, scientific research, and educa-
tional applications increasingly rely on automated chart analysis for decision-making pro-
cesses [1]. The emergence of multimodal large language models represents a significant 
advancement in bridging the gap between visual perception and semantic understanding, 
offering promising solutions for automated chart interpretation tasks. 

Traditional computer vision approaches to chart understanding have focused on spe-
cific chart types or required extensive preprocessing pipelines [2]. These limitations have 
motivated the development of more flexible, generalizable solutions that can adapt to di-
verse visualization formats without domain-specific training. Recent advances in trans-
former architectures and attention mechanisms have enabled the creation of models that 
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can simultaneously process visual and textual information, making them particularly suit-
able for chart reasoning tasks that require understanding both graphical elements and 
accompanying annotations [3]. 

The significance of this research extends beyond technical capabilities to practical 
applications in business analytics, academic research, and automated reporting systems. 
Organizations across various sectors depend on accurate chart interpretation for strategic 
planning, risk assessment, and performance monitoring [4]. The ability to automatically 
extract insights from visualizations could revolutionize how data-driven decisions are 
made, particularly in scenarios where human analysis is time-consuming or impractical. 

1.2. Research Challenges in Large Language Model Chart Reasoning 
Despite significant progress in multimodal AI development, chart reasoning presents 

unique challenges that distinguish it from general image understanding tasks. The com-
plexity of data visualizations requires models to possess sophisticated visual parsing ca-
pabilities, mathematical reasoning skills, and contextual understanding of domain-spe-
cific conventions [5]. Unlike natural images, charts contain abstract representations of 
quantitative relationships that must be decoded through precise spatial analysis and nu-
merical computation. 

One primary challenge involves the interpretation of visual encoding schemes, 
where models must recognize how data values are mapped to visual properties such as 
position, color, size, and shape [6]. This mapping varies significantly across chart types 
and visualization styles, requiring robust generalization capabilities. Additionally, charts 
often contain multiple information layers, including axes, legends, annotations, and data 
points, each contributing essential context for accurate interpretation. 

The temporal and relational aspects of chart reasoning pose additional complexity, 
particularly when analyzing trends, correlations, and comparative relationships [7]. Mod-
els must demonstrate the ability to perform mathematical operations, statistical analysis, 
and logical reasoning while maintaining awareness of visualization context and intended 
message. These requirements exceed traditional pattern recognition capabilities and de-
mand integration of symbolic reasoning with perceptual processing [8]. 

1.3. Research Objectives and Contributions 
This research addresses the critical need for systematic evaluation of chart reasoning 

capabilities in current multimodal large language models through comprehensive empir-
ical analysis. Our primary objective focuses on identifying and quantifying the key factors 
that influence MLLM performance across diverse chart types and complexity levels. We 
establish a standardized evaluation framework that enables consistent comparison of 
model capabilities while providing insights into specific strengths and limitations. 

The study contributes three major advancements to the field of multimodal AI eval-
uation. We develop a comprehensive benchmark dataset specifically designed for chart 
reasoning tasks, incorporating diverse visualization types, complexity levels, and reason-
ing requirements [9]. Our evaluation methodology introduces novel metrics for measur-
ing chart understanding accuracy that account for both visual perception and reasoning 
correctness. We provide detailed analysis of performance variations across different chart 
characteristics, enabling targeted improvements in model design and deployment strate-
gies. 

Our findings establish foundational benchmarks for chart reasoning research while 
identifying critical areas for future development. The research provides practical guid-
ance for selecting appropriate models for specific chart analysis applications and offers 
insights into optimal data presentation strategies that maximize automated interpretation 
accuracy [10]. 
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2. Related Work and Theoretical Foundation 
2.1. Multimodal Large Language Models for Visual Understanding 

The evolution of multimodal large language models has transformed approaches to 
visual understanding tasks, with significant implications for chart interpretation capabil-
ities. Early multimodal systems relied on separate vision and language processing pipe-
lines that required explicit feature fusion mechanisms [11]. Recent architectures integrate 
visual and textual processing through unified attention mechanisms, enabling more so-
phisticated cross-modal reasoning capabilities essential for chart understanding tasks. 

Contemporary MLLMs employ various architectural strategies for visual-language 
integration, ranging from late fusion approaches that combine pre-processed visual fea-
tures with language representations, to early fusion methods that process multimodal in-
puts jointly from initial stages [12]. The choice of integration strategy significantly impacts 
model performance on chart reasoning tasks, as different approaches offer varying levels 
of spatial precision and semantic understanding. Vision transformers have emerged as 
particularly effective backbone architectures for chart analysis due to their ability to cap-
ture fine-grained spatial relationships while maintaining global context awareness [13]. 

Recent developments in instruction-tuning and alignment techniques have enhanced 
MLLM capabilities for specialized visual reasoning tasks [14]. These training methodolo-
gies enable models to better understand task-specific requirements and generate more ac-
curate interpretations of complex visual content. The application of these techniques to 
chart understanding represents an active area of research with significant potential for 
improving automated data analysis capabilities. 

Training data quality and diversity play crucial roles in determining MLLM effec-
tiveness for chart reasoning applications [15]. Models trained on diverse visualization da-
tasets demonstrate improved generalization across chart types and visual styles. The in-
corporation of synthetic chart data generated through programmatic visualization librar-
ies has proven effective for augmenting training datasets and improving model robust-
ness to novel chart configurations [16]. 

2.2. Chart Comprehension and Visual Reasoning Methodologies 
Chart comprehension requires sophisticated visual reasoning capabilities that extend 

beyond basic object recognition to include spatial analysis, numerical computation, and 
semantic interpretation of abstract representations. Traditional approaches to automated 
chart analysis employed rule-based systems that relied on explicit feature extraction and 
domain-specific heuristics [17]. These methods achieved reasonable performance on well-
defined chart types but lacked the flexibility required for diverse visualization formats 
and novel chart designs. 

Machine learning approaches to chart understanding have evolved from specialized 
computer vision models trained on specific chart types to more general frameworks capa-
ble of handling diverse visualization formats [18]. Deep learning methods have demon-
strated particular success in extracting structural information from charts, including axis 
detection, data point localization, and legend interpretation. These capabilities form the 
foundation for higher-level reasoning tasks such as trend analysis and comparative as-
sessment. 

The integration of symbolic reasoning with perceptual processing represents a criti-
cal advancement in chart comprehension methodologies [19]. Modern approaches com-
bine neural networks for visual feature extraction with symbolic reasoning systems for 
mathematical computation and logical inference. This hybrid approach enables more ac-
curate interpretation of quantitative relationships and supports complex reasoning tasks 
that require both visual understanding and mathematical analysis. 

Recent research has emphasized the importance of contextual understanding in chart 
interpretation, recognizing that accurate comprehension requires consideration of chart 
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purpose, target audience, and domain-specific conventions [20]. Contextual factors influ-
ence interpretation strategies and affect the relative importance of different visual ele-
ments. Models that incorporate contextual awareness demonstrate improved perfor-
mance on real-world chart analysis tasks where interpretation requirements vary based 
on application domain and user objectives. 

2.3. Multimodal AI System Evaluation Frameworks 
Evaluation of multimodal AI systems for chart reasoning requires specialized frame-

works that address the unique characteristics of visual-quantitative understanding tasks. 
Traditional computer vision evaluation metrics focus primarily on classification accuracy 
and object detection performance, which may not adequately capture the nuanced re-
quirements of chart interpretation [21]. Chart reasoning evaluation must consider both 
perceptual accuracy and reasoning correctness, requiring metrics that assess multiple di-
mensions of performance simultaneously. 

Benchmark development for chart understanding has progressed from simple chart 
classification tasks to complex reasoning scenarios that require mathematical computation, 
trend analysis, and comparative assessment [22]. Modern benchmarks incorporate diverse 
chart types, varying complexity levels, and multiple reasoning task categories to provide 
comprehensive evaluation coverage. The inclusion of both synthetic and real-world chart 
data ensures that evaluation results reflect practical application scenarios while maintain-
ing controlled experimental conditions. 

Automated evaluation methodologies for chart reasoning face unique challenges re-
lated to answer verification and scoring consistency [23]. Unlike traditional classification 
tasks with discrete labels, chart reasoning often produces numerical or descriptive an-
swers that require sophisticated evaluation logic. Recent approaches employ large lan-
guage models as evaluation agents, leveraging their natural language understanding ca-
pabilities to assess answer quality and provide nuanced scoring [24]. 

Cross-modal evaluation strategies have gained prominence as researchers recognize 
the importance of assessing both visual perception and language generation capabilities 
in multimodal systems [25]. These approaches evaluate model performance across multi-
ple output modalities, including visual attention maps, intermediate reasoning steps, and 
final answer generation. Comprehensive evaluation frameworks provide insights into 
model strengths and weaknesses across different aspects of the chart reasoning pipeline 
[26]. 

The development of standardized evaluation protocols facilitates comparison across 
different model architectures and training approaches while enabling systematic analysis 
of performance factors [27]. Standardization efforts focus on establishing consistent data 
formats, evaluation metrics, and experimental procedures that support reproducible re-
search and enable meaningful performance comparisons. These protocols are essential for 
advancing the field and enabling practical deployment of chart reasoning systems [28]. 

Error analysis methodologies specifically designed for chart reasoning tasks provide 
valuable insights into model limitations and potential improvement strategies [29]. These 
approaches categorize errors based on reasoning type, visual complexity, and failure 
mode, enabling targeted development efforts and informing model selection decisions for 
specific applications. Systematic error analysis contributes to understanding the funda-
mental challenges in automated chart interpretation and guides future research directions. 

3. Experimental Methodology and Dataset Construction 
3.1. Chart Dataset Selection and Preprocessing Strategies 

Our experimental framework incorporates a meticulously curated dataset compris-
ing 2,400 charts systematically selected to represent diverse visualization types, complex-
ity levels, and domain applications. The dataset construction process prioritized compre-
hensive coverage of standard chart formats including bar graphs, line plots, scatter plots, 
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pie charts, and multi-panel composite visualizations. Each chart category contains 400 
representative samples drawn from academic publications, business reports, and educa-
tional materials to ensure ecological validity and practical relevance. 

The preprocessing pipeline implements standardized image preprocessing proce-
dures to ensure consistent input formatting across all experimental conditions. Charts un-
dergo resolution standardization to 1024x768 pixels while maintaining aspect ratio integ-
rity through intelligent padding strategies. Color space normalization converts all visual-
izations to RGB format with gamma correction applied to enhance contrast consistency. 
Text extraction and optical character recognition preprocessing creates parallel textual 
representations of chart annotations, enabling analysis of text-image interaction effects. 

Data quality assurance procedures include manual validation of ground truth anno-
tations performed by domain experts with visualization analysis expertise. Each chart re-
ceives comprehensive labeling covering chart type classification, data point identification, 
axis information, and associated reasoning task specifications. Inter-annotator agreement 
analysis achieves Cohen's kappa values exceeding 0.85 across all annotation categories, 
confirming annotation reliability and consistency (Table 1). 

Table 1. Dataset Composition and Characteristics. 

Chart 
Type 

Sample 
Count 

Complexity Levels Domain Sources 
Avg. Data 

Points 
Bar 

Charts 
400 Low (120), Med (180), High (100) 

Business (150), Academic 
(150), Educational (100) 

12.3 

Line 
Plots 

400 Low (100), Med (200), High (100) 
Scientific (200), Financial 

(100), Social (100) 
18.7 

Scatter 
Plots 

400 Low (80), Med (220), High (100) 
Research (250), Industrial 

(100), Medical (50) 
45.2 

Pie 
Charts 

400 Low (150), Med (200), High (50) 
Marketing (200), Survey 

(150), Administrative (50) 
6.8 

Multi-
Panel 

400 Low (50), Med (150), High (200) 
Academic (300), 
Technical (100) 

28.4 

Total 2400 Low (500), Med (950), High (550) Mixed Domains 22.3 
The complexity classification system employs multidimensional criteria incorporat-

ing visual density, data point quantity, annotation complexity, and reasoning require-
ments. Low complexity charts contain fewer than 10 data points with minimal visual clut-
ter and straightforward interpretation tasks. Medium complexity visualizations include 
10-30 data points with moderate annotation density and multi-step reasoning require-
ments. High complexity charts exceed 30 data points, incorporate dense visual infor-
mation, and require sophisticated analytical reasoning for accurate interpretation. 

Domain stratification ensures balanced representation across application areas while 
maintaining sufficient sample sizes for statistical analysis. Business domain charts empha-
size performance metrics, financial data, and operational indicators commonly encoun-
tered in corporate settings. Academic charts focus on research findings, experimental re-
sults, and theoretical concepts typical of scholarly publications. Educational materials pro-
vide simplified visualizations designed for instructional purposes with clear pedagogical 
objectives. 

3.2. Evaluation Metrics and Benchmark Design 
The evaluation framework incorporates multiple complementary metrics designed 

to capture different aspects of chart reasoning performance while providing comprehen-
sive assessment capabilities. Primary evaluation focuses on task-specific accuracy 
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measures that assess correctness of numerical extraction, trend identification, and com-
parative analysis. Secondary metrics evaluate reasoning quality, response completeness, 
and explanation coherence to provide holistic performance assessment. 

Numerical accuracy assessment employs tolerance-based scoring that accounts for 
reasonable approximation errors while maintaining stringent standards for precise data 
extraction tasks. Relative error thresholds of 5% for exact value extraction and 10% for 
trend magnitude estimation accommodate minor perceptual variations while ensuring 
meaningful accuracy standards. Statistical significance testing validates performance dif-
ferences across models and experimental conditions using paired t-tests with Bonferroni 
correction for multiple comparisons (Table 2). 

Table 2. Evaluation Metric Specifications. 

Metric Category Specific Measures Tolerance Levels Weight Factor 
Numerical Extraction Exact Value Accuracy ±5% relative error 0.30 

Trend Analysis Direction Correctness Binary (correct/incorrect) 0.25 
Comparative Assessment Ranking Accuracy Kendall's tau correlation 0.20 

Explanation Quality Semantic Coherence 1-5 Likert scale 0.15 
Response Completeness Coverage Score Percentage of required elements 0.10 

Reasoning quality evaluation incorporates automated assessment using trained lan-
guage models that analyze explanation coherence, logical consistency, and completeness. 
Human evaluation provides validation of automated scoring through expert assessment 
of response quality across multiple dimensions. Inter-rater reliability analysis demon-
strates strong agreement (ICC > 0.80) between automated and human evaluation scores, 
confirming the validity of computational assessment approaches. 

The benchmark design implements stratified sampling across chart types and com-
plexity levels to ensure balanced evaluation coverage while enabling detailed perfor-
mance analysis within specific categories. Cross-validation procedures employ 5-fold 
splitting with stratification maintained across all relevant variables to provide robust per-
formance estimates. Statistical power analysis confirms adequate sample sizes for detect-
ing meaningful performance differences with 80% power at α = 0.05. 

Performance aggregation employs weighted scoring that reflects the relative im-
portance of different reasoning capabilities while providing interpretable overall perfor-
mance measures. Task-specific subscores enable detailed analysis of model strengths and 
weaknesses across different aspects of chart reasoning. Confidence intervals and effect 
size calculations provide context for interpreting performance differences and assessing 
practical significance. 

3.3. Influencing Factor Identification and Experimental Setup 
The experimental design systematically manipulates key factors hypothesized to in-

fluence chart reasoning performance while controlling for confounding variables through 
careful experimental planning. Primary factors include visual complexity metrics, data 
density levels, textual annotation presence, color scheme variations, and chart size speci-
fications. Secondary factors encompass domain specificity, chart style conventions, and 
reasoning task complexity to provide comprehensive factor analysis. 

Visual complexity quantification employs computational metrics including edge 
density, color diversity, spatial frequency analysis, and information-theoretic measures of 
visual entropy. Automated complexity scoring algorithms analyze each chart to generate 
standardized complexity indices ranging from 0 to 100. Manual complexity validation by 
visualization experts confirms automated scoring accuracy and provides qualitative com-
plexity assessments for comparison purposes (Table 3). 
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Table 3. Experimental Factor Specifications. 

Factor Category Levels Measurement Scale Control Variables 
Visual 

Complexity 
Low (0-30), Medium (31-70), 

High (71-100) 
Automated 

complexity index 
Chart type, data 

domain 

Data Density 
Sparse (<10), Moderate (10-

30), Dense (>30) 
Point count per unit 

area 
Visualization area, 

scaling 

Text Annotation 
None, Minimal, 
Comprehensive 

Annotation word 
count 

Font size, 
positioning 

Color Scheme 
Monochrome, Limited 

palette, Full color 
Unique color count 

Contrast ratio, 
accessibility 

Chart Size 
Small (512px), Medium 

(1024px), Large (2048px) 
Pixel dimensions 

Aspect ratio, 
resolution 

Data density manipulation involves systematic variation of information content 
while maintaining chart readability and interpretive validity. Sparse configurations pre-
sent minimal data points with ample visual spacing, moderate density includes typical 
data loads encountered in practical applications, and dense configurations challenge 
model capabilities with high information content. Density calculations normalize for chart 
area to ensure consistent comparison across different visualization formats. 

Textual annotation experiments manipulate the presence and comprehensiveness of 
chart labels, legends, and descriptive text to assess the impact of linguistic context on rea-
soning performance. Controlled text removal procedures create versions of each chart 
with varying annotation levels while preserving essential structural information. Text 
complexity analysis ensures comparable linguistic difficulty across annotation conditions 
(Figure 1). 

 
Figure 1. Experimental Design Framework for Multi-Factor Analysis. 

The visualization depicts a comprehensive experimental design schematic, showing 
the interaction matrix between primary influencing factors and dependent performance 
variables. The framework illustrates how visual complexity, data density, textual annota-
tions, color schemes, and chart size systematically vary across experimental conditions. 
Each factor operates on multiple levels with careful counterbalancing to isolate individual 
and interaction effects. The design employs a full factorial approach with statistical con-
trols for order effects and participant characteristics. Color-coded pathways indicate 

Primary Influencing Factors

Visual Complexity
Low (0-30): Simple designs
Medium (31-70): Moderate
High (71-100): Complex

Correlation: r = -0.73

Data Density
Sparse (<10 points)
Moderate (10-30 points)
Dense (>30 points)

Threshold: 15-20 points

Text Annotation
None / Minimal
Comprehensive

Improvement: +23.7%
Axis labels: +12.4%

Chart Type
Bar, Line, Scatter
Pie, Multi-Panel

n=400 each type
F(4,120) = 47.3, p<0.001

Performance Variables

Numerical Accuracy
Exact Value (±5%): 30%
Trend Direction: 25%
Range: 78.3% - 36.4%

Weight: 0.30

Reasoning Quality
Semantic Coherence
Explanation Quality
1-5 Likert Scale

ICC > 0.80

Response Completeness
Coverage Score
Required Elements %

Weight: 0.10

Overall Performance
GPT-4V: 65.9%
LLaVA-1.5: 60.9%
BLIP-2: 56.9%

6 models evaluated

Multimodal Integration
Processing Framework

Factor Interaction Matrix

-0.58 -0.41 -0.23

0.68 0.89 1.52

Statistical Controls
• 5-fold cross-validation with stratification
• Power analysis: 80% power at α = 0.05
• Mixed-effects modeling for repeated measures

Legend
Causal pathway Control variables

Input factors Output measures

Processing core

https://pinnaclepubs.com/index.php/PAPPS


Pinnacle Academic Press Proceedings Series https://pinnaclepubs.com/index.php/PAPPS 
 

Vol. 3 (2025) 50  

causal relationships between experimental manipulations and measured outcomes, while 
dotted lines represent control variables maintained constant across conditions. The sche-
matic includes confidence intervals for effect size estimates and statistical power calcula-
tions for each factor comparison. 

Statistical analysis procedures employ mixed-effects modeling to account for re-
peated measures within chart types while enabling analysis of between-subjects factors 
related to model characteristics. Random effects modeling captures individual differences 
between models while fixed effects estimate factor impacts on performance outcomes. 
Post-hoc analysis using Tukey's HSD provides detailed comparison of factor level differ-
ences with appropriate multiple comparison corrections. 

4. Results Analysis and Influencing Factors Investigation 
4.1. Performance Comparison across Different Chart Types 

Comprehensive performance analysis reveals significant variations in MLLM chart 
reasoning capabilities across different visualization types, with notable disparities in ac-
curacy, response quality, and reasoning sophistication. Bar chart interpretation demon-
strates the highest overall performance levels, with mean accuracy scores ranging from 
78.3% for GPT-4V to 62.1% for smaller specialized models. The structured nature of bar 
charts, combined with clear spatial encoding of quantitative relationships, facilitates ac-
curate data extraction and comparative analysis across all evaluated models. 

Line plot interpretation presents moderate challenge levels with performance scores 
spanning 71.2% to 55.8% across the model spectrum. Temporal reasoning requirements 
and trend analysis tasks contribute to increased complexity, particularly for models with 
limited mathematical reasoning capabilities. Scatter plot analysis proves most challenging, 
with accuracy rates declining to 58.4% for top-performing models and 41.2% for baseline 
systems. The requirement for correlation assessment and pattern recognition in two-di-
mensional space exceeds current model capabilities in many scenarios (Table 4). 

Table 4. Model Performance across Chart Types (Accuracy Percentages). 

Model Bar Charts Line Plots Scatter Plots Pie Charts Multi-Panel Overall 
GPT-4V 78.3 ± 3.2 71.2 ± 4.1 58.4 ± 5.3 69.7 ± 3.8 52.1 ± 6.2 65.9 ± 2.8 

LLaVA-1.5 73.6 ± 3.8 66.8 ± 4.7 52.1 ± 5.9 64.3 ± 4.2 47.8 ± 6.8 60.9 ± 3.1 
BLIP-2 69.2 ± 4.1 62.4 ± 5.2 48.7 ± 6.1 60.8 ± 4.6 43.5 ± 7.1 56.9 ± 3.4 

InstructBLIP 67.8 ± 4.3 59.9 ± 5.5 46.2 ± 6.4 58.1 ± 4.9 41.3 ± 7.5 54.7 ± 3.6 
MiniGPT-4 64.1 ± 4.6 56.7 ± 5.8 43.8 ± 6.7 55.4 ± 5.1 38.9 ± 7.8 51.8 ± 3.8 
Flamingo 62.1 ± 4.8 53.2 ± 6.1 41.2 ± 6.9 52.7 ± 5.4 36.4 ± 8.1 49.1 ± 4.0 

Pie chart analysis yields intermediate performance levels with accuracy scores be-
tween 69.7% and 52.7% across evaluated models. The circular geometry and proportional 
relationships in pie charts require specialized spatial reasoning capabilities that vary sig-
nificantly among models. Multi-panel chart interpretation represents the most challeng-
ing task category, with performance declining substantially across all models due to in-
creased cognitive load and complex cross-panel reasoning requirements. 

Statistical analysis using repeated measures ANOVA confirms significant main ef-
fects for chart type (F (4120) = 47.3, p < 0.001) and model (F (5150) = 23.8, p < 0.001), with 
substantial effect sizes (η² = 0.61 and η² = 0.44 respectively). Post-hoc analysis reveals sig-
nificant pairwise differences between all chart types except pie charts and line plots, 
which demonstrate comparable difficulty levels. Model ranking remains consistent across 
chart types, suggesting systematic differences in visual reasoning capabilities rather than 
task-specific advantages (Figure 2). 
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Figure 2. Performance Distribution Analysis across Chart Types and Complexity Levels. 

The visualization presents a comprehensive box-and-whisker plot matrix displaying 
performance distributions for each model-chart type combination across three complexity 
levels (low, medium, high). Individual panels show median performance scores (central 
line), interquartile ranges (box boundaries), and outlier distributions (whisker extensions) 
for systematic comparison. Color coding distinguishes complexity levels with blue repre-
senting low complexity, orange indicating medium complexity, and red denoting high 
complexity conditions. The plot reveals clear performance degradation with increased 
complexity across all chart types, with scatter plots showing the steepest decline and bar 
charts maintaining relative stability. Statistical significance indicators mark comparisons 
where p < 0.05 after Bonferroni correction. 

Error pattern analysis identifies common failure modes including numerical extrac-
tion errors, spatial relationship misinterpretation, and legend processing difficulties. Bar 
chart errors primarily involve axis scale misreading and comparative magnitude assess-
ment failures. Line plot interpretation errors concentrate on trend direction identification 
and temporal sequence understanding. Scatter plot failures encompass correlation 
strength assessment and outlier identification challenges. 

4.2. Impact of Visual Complexity and Data Density on Accuracy 
Systematic analysis of visual complexity effects reveals strong negative correlations 

between complexity metrics and reasoning accuracy across all chart types and model ar-
chitectures. Pearson correlation coefficients range from -0.73 for overall performance to -
0.81 for specific numerical extraction tasks, indicating substantial impact of visual design 
characteristics on model capabilities. Low complexity charts achieve mean accuracy of 
71.4% compared to 48.2% for high complexity visualizations, representing a 32.5% relative 
performance decline. 

Data density analysis demonstrates nonlinear relationships between point quantity 
and interpretation accuracy, with performance degradation accelerating beyond thresh-
old density levels. Charts containing fewer than 10 data points maintain stable perfor-
mance levels across models, while visualizations exceeding 30 data points show steep ac-
curacy decline. The inflection point occurs consistently around 15-20 data points regard-
less of chart type, suggesting fundamental limitations in current model architectures for 
processing dense visual information (Table 5). 
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Table 5. Complexity Impact Analysis (Mean Accuracy by Complexity Level). 

Complexity 
Level 

Visual Entropy 
Score 

Data Point 
Range 

Mean Accuracy 
Standard 
Deviation 

Effect Size 
(Cohen's d) 

Low 0.21 ± 0.08 3-12 points 71.4% ± 8.2% 12.1% - 
Medium 0.54 ± 0.12 13-28 points 59.7% ± 11.4% 15.8% 0.89 

High 0.83 ± 0.15 29-65 points 48.2% ± 14.7% 18.9% 1.52 
Visual entropy quantified through information-theoretic measures provides an ob-

jective complexity assessment strongly correlated with human perceptual difficulty rat-
ings (r = 0.76, p < 0.001). Entropy calculations incorporate spatial frequency distribution, 
color diversity indices, and structural organization metrics to generate comprehensive 
complexity scores. Automated complexity classification achieves 89.3% agreement with 
expert human assessment, validating computational approaches to complexity measure-
ment. 

Interaction effects between complexity and chart type reveal differential sensitivity 
across visualization formats. Bar charts demonstrate remarkable resilience to complexity 
increases, maintaining 65.2% accuracy even in high complexity conditions. Scatter plots 
show extreme sensitivity with accuracy declining from 67.8% in low complexity to 31.4% 
in high complexity configurations. Line plots and pie charts exhibit intermediate sensitiv-
ity patterns with gradual performance degradation across complexity levels (Figure 3). 

 
Figure 3. Data Density Performance Heat Map Analysis. 

The heat map visualization displays a two-dimensional performance landscape with 
data density levels (x-axis) and visual complexity scores (y-axis) creating a grid where 
color intensity represents average model accuracy. Deep red regions indicate high perfor-
mance areas (>70% accuracy) concentrated in low density, low complexity quadrants. Yel-
low zones represent moderate performance (50-70% accuracy) in intermediate conditions. 
Blue areas denote challenging conditions (<50% accuracy) associated with high density 
and high complexity combinations. Contour lines overlay the heat map to indicate iso-
performance curves, revealing nonlinear relationships between factors and enabling iden-
tification of optimal operating regions for different model architectures. 

Regression analysis quantifies the relationship between complexity factors and per-
formance outcomes using multiple predictor models. Visual complexity emerges as the 
strongest single predictor (β = -0.58, p < 0.001), followed by data density (β = -0.41, p < 
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0.001) and chart type (β = -0.23, p < 0.01). Interactive terms between complexity and den-
sity show significant effects (β = -0.19, p < 0.05), indicating multiplicative rather than ad-
ditive impact patterns. 

4.3. Analysis of Textual Context and Multimodal Fusion Effects 
Textual annotation analysis reveals substantial benefits from linguistic context inte-

gration, with comprehensive annotation conditions improving accuracy by 23.7% relative 
to text-free chart interpretation. Models demonstrate varying sensitivity to textual infor-
mation, with instruction-tuned architectures showing greatest benefit from annotation 
presence. GPT-4V achieves 15.8% improvement with comprehensive annotations, while 
smaller models gain up to 31.2% in similar conditions, suggesting that textual context par-
tially compensates for limited visual reasoning capabilities. 

Annotation type analysis distinguishes between different categories of textual infor-
mation including axis labels, data point annotations, legend descriptions, and explanatory 
captions. Axis label presence contributes most significantly to performance improvement 
(12.4% average gain), followed by legend information (8.7% gain) and data annotations 
(6.3% gain). Explanatory captions provide minimal additional benefit beyond other anno-
tation types, suggesting that models effectively extract semantic context from structured 
textual elements (Table 6). 

Table 6. Textual Annotation Impact Analysis. 

Annotation Type 
Presence 

Rate 
Average 

Improvement 
Model Sensitivity 

Range 
Statistical 

Significance 
Axis Labels 95.3% 12.4% ± 2.1% 8.7%-18.2% p < 0.001 

Legend 78.6% 8.7% ± 1.8% 5.2%-14.3% p < 0.001 
Data Annotations 42.1% 6.3% ± 2.3% 2.1%-11.8% p < 0.01 

Explanatory Captions 23.7% 2.8% ± 1.9% 0.3%-6.4% p < 0.05 
Comprehensive 18.9% 23.7% ± 3.4% 15.8%-31.2% p < 0.001 
Multimodal fusion effectiveness varies substantially across model architectures, with 

some systems demonstrating sophisticated cross-modal integration while others exhibit 
limited capability for leveraging textual information. Advanced models employ attention 
mechanisms that effectively weight visual and textual information based on task require-
ments and input characteristics. Ablation studies removing textual processing capabilities 
result in performance decreases ranging from 18.4% to 29.7%, confirming the critical im-
portance of multimodal integration for optimal chart reasoning. 

Cross-modal attention analysis using gradient-based visualization techniques re-
veals distinct patterns of visual-textual integration across different models and chart types. 
Successful models demonstrate coordinated attention between relevant visual regions 
and corresponding textual annotations, while less effective systems show disconnected 
processing patterns. Attention alignment scores correlate strongly with overall perfor-
mance (r = 0.68, p < 0.001), providing insights into effective fusion mechanisms (Figure 4). 
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Figure 4. Cross-Modal Attention Alignment Visualization. 

The visualization depicts attention weight distributions across visual and textual mo-
dalities for representative chart interpretation tasks. Heat map overlays on chart images 
show visual attention patterns with intensity indicating focus strength, while textual at-
tention highlights relevant words and phrases. Connecting lines illustrate cross-modal 
correspondence between visual regions and textual elements, with line thickness repre-
senting alignment strength. Color coding distinguishes between different attention heads 
in multi-head attention architectures, revealing specialized processing patterns for differ-
ent information types. Temporal sequences show attention evolution across processing 
steps, demonstrating how models iteratively integrate multimodal information to reach 
final interpretations. 

Language-visual grounding analysis examines how effectively models connect tex-
tual descriptions with corresponding visual elements in charts. Grounding accuracy as-
sessment involves evaluating whether models correctly associate numerical values men-
tioned in text with appropriate visual representations. High-performing models achieve 
grounding accuracy exceeding 85%, while baseline systems struggle with correspondence 
rates below 60%. Grounding failures contribute significantly to overall interpretation er-
rors, highlighting the importance of robust multimodal alignment mechanisms (Figure 5). 
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Figure 5. Model Architecture Comparison for Multimodal Integration Efficiency. 

The architectural comparison visualization presents a detailed schematic showing 
different approaches to multimodal fusion across evaluated models. The diagram illus-
trates information flow from input modalities through various processing stages to final 
output generation. Early fusion architectures combine visual and textual features at input 
level, intermediate fusion approaches integrate information at hidden layer representa-
tions, and late fusion methods combine processed outputs from separate modality 
streams. Performance metrics overlay each architectural component, showing throughput, 
accuracy, and computational efficiency characteristics. Color gradients indicate infor-
mation flow strength and processing bottlenecks, while numerical annotations provide 
quantitative performance comparisons between architectural choices. 

The analysis reveals optimal fusion strategies vary depending on chart characteristics 
and task requirements. Complex multi-panel charts benefit from early fusion approaches 
that enable comprehensive cross-modal reasoning, while simple single-panel visualiza-
tions perform well with late fusion methods that maintain modality-specific processing 
advantages. These findings provide practical guidance for model selection and optimiza-
tion in different application scenarios. 

5. Conclusion and Future Directions 
5.1. Key Findings and Practical Implications 

Our comprehensive evaluation reveals fundamental insights into the current state 
and limitations of chart reasoning capabilities in multimodal large language models. The 
substantial performance variations across chart types underscore the importance of task-
specific model selection and deployment strategies. Bar charts consistently demonstrate 
highest accuracy levels due to their structured spatial encoding and clear quantitative re-
lationships, making them optimal for automated analysis applications. The pronounced 
difficulties with scatter plot interpretation and multi-panel analysis indicate areas requir-
ing focused development attention. 

The strong negative correlation between visual complexity and performance accu-
racy has immediate practical implications for data visualization design. Organizations 
seeking to maximize automated interpretation accuracy should prioritize simplified vis-
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ual designs with reduced information density and clear spatial organization. The identi-
fication of critical threshold density levels around 15-20 data points provides concrete 
guidance for optimal chart configuration in automated analysis workflows. 

Textual annotation benefits demonstrate the crucial importance of comprehensive la-
beling strategies for maximizing MLLM effectiveness. The substantial performance im-
provements from axis labels and legends justify additional effort in annotation complete-
ness, particularly for applications where interpretation accuracy is critical. These findings 
suggest that hybrid human-AI workflows incorporating strategic annotation enhance-
ment could significantly improve automated chart analysis outcomes. 

The varying sensitivity to textual context across different model architectures pro-
vides guidance for model selection decisions based on available annotation resources. Or-
ganizations with limited annotation capabilities may benefit from models demonstrating 
strong visual-only performance, while those able to provide comprehensive textual con-
text should prioritize models with sophisticated multimodal fusion capabilities. 

5.2. Limitations and Methodological Considerations 
Several methodological limitations constrain the generalizability and interpretation 

of our findings. The dataset composition, while comprehensive within evaluated catego-
ries, may not fully represent the diversity of visualization styles and domain-specific con-
ventions encountered in real-world applications. The focus on static chart analysis ex-
cludes dynamic visualizations and interactive elements that increasingly characterize 
modern data presentation formats. 

Evaluation metric selection emphasizes accuracy and correctness measures while po-
tentially undervaluing other important aspects of chart interpretation such as insight gen-
eration, contextual understanding, and explanatory coherence. The reliance on ground 
truth annotations may not capture the inherent ambiguity and multiple valid interpreta-
tions possible for many visualization analysis tasks. Future evaluation frameworks should 
incorporate more nuanced assessment approaches that account for ranges of interpreta-
tion validity and contextual appropriateness. 

The experimental design controls for many confounding factors but cannot eliminate 
all potential sources of variation that might influence model performance in practical de-
ployment scenarios. Factors such as image quality, compression artifacts, and display 
characteristics may significantly impact performance but were not systematically evalu-
ated. The laboratory-controlled environment may not adequately reflect the challenges of 
real-world chart interpretation tasks. 

Temporal aspects of model development and training data evolution introduce ad-
ditional complexity in interpreting performance comparisons. The rapid pace of model 
advancement means that current findings may become outdated as newer architectures 
and training approaches emerge. Longitudinal evaluation strategies will be necessary to 
track performance evolution and identify persistent limitations versus temporary tech-
nical constraints. 

5.3. Future Research Opportunities and Technological Prospects 
Emerging research directions offer promising avenues for addressing current limita-

tions and advancing chart reasoning capabilities. The integration of symbolic reasoning 
systems with neural architectures presents opportunities for more robust mathematical 
computation and logical inference in chart interpretation tasks. Hybrid approaches com-
bining statistical analysis capabilities with visual understanding could enable more so-
phisticated trend analysis and predictive reasoning from visualization data. 

Advanced training methodologies including few-shot learning, meta-learning, and 
domain adaptation techniques could improve model performance on specialized chart 
types and domain-specific visualization conventions. The development of chart-specific 
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pre-training objectives and synthetic data generation approaches may enhance model ca-
pabilities for rare visualization formats and complex reasoning scenarios. 

Interactive chart analysis represents a significant frontier for future development, en-
abling models to request clarification, explore different interpretations, and engage in col-
laborative analysis workflows with human users. The integration of natural language di-
alogue capabilities with chart reasoning could facilitate more effective human-AI collab-
oration in data analysis applications. 

The extension to temporal chart analysis and dynamic visualization interpretation 
presents both technical challenges and practical opportunities. Models capable of analyz-
ing animation sequences, trend evolution, and interactive visualization states could pro-
vide more comprehensive analytical capabilities for complex data exploration tasks. Re-
search into attention mechanisms specifically designed for temporal-visual integration 
could advance capabilities in this domain. 

Theoretical advancement in understanding the cognitive and computational require-
ments of chart reasoning will inform the development of more effective architectures and 
training approaches. Cross-disciplinary collaboration with cognitive science, human-com-
puter interaction, and visualization research communities could provide insights into op-
timal design strategies for both models and evaluation frameworks. 
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