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Abstract: Multimodal medical imaging, which combines spatial and functional information, plays 
an important role in improving the accuracy of complex disease diagnosis. This study aims to ad-
dress the diagnostic challenges of complex lesions by designing a deep fusion network that inte-
grates channel attention and multi-scale feature extraction. An end-to-end model was built and 
tested on two public multimodal datasets: glioma and lung tumors. The experimental results show 
that, compared with existing multimodal fusion methods, the proposed approach achieves better 
performance in classification accuracy, area under the receiver operating characteristic curve (ROC-
AUC), and Dice coefficient for image segmentation. This method provides a new solution for clinical 
decision support based on multi-source imaging. 
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1. Introduction 
Medical imaging has become a vital part of modern clinical diagnostics after more 

than a century of continuous development [1]. Since Wilhelm Röntgen discovered X-rays 
in 1895 and launched a new era of diagnostic imaging, the field has undergone steady 
technological advancement. Magnetic resonance imaging (MRI), known for its ability to 
distinguish soft tissues, offers sub-millimeter spatial resolution and allows clear visuali-
zation of gray and white matter structures in the brain [2]. Computed tomography (CT) 
has demonstrated excellent performance in lung disease diagnosis. Its scanning time has 
decreased from several minutes to a few seconds, greatly improving diagnostic efficiency. 
The detection rate of small pulmonary nodules has exceeded 90%. Positron emission to-
mography (PET) provides metabolic-level information and can detect abnormal activity 
months or even years before anatomical changes are visible, which is valuable in early 
tumor diagnosis [3]. However, single-modality imaging is limited by its lack of compre-
hensive information. When diagnosing complex lesions, it often fails to provide accurate 
and complete results. For example, in glioma diagnosis, MRI alone may not reliably de-
termine the malignancy of tumors [4]. When combined with CT and PET, the diagnostic 
accuracy can improve by approximately 20%. Multimodal medical imaging fusion has 
emerged to address this challenge. By combining information from different imaging mo-
dalities, it provides both spatial and functional data that complement each other. In tumor 
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diagnosis, MRI offers detailed soft tissue contrast, CT is effective for imaging bones and 
lungs and PET reveals abnormal metabolic activity [5]. Fusing these modalities allows 
clinicians to evaluate the lesion’s location, size, shape and biological behavior from mul-
tiple perspectives, which supports more accurate diagnosis and treatment planning [6].  

From a clinical standpoint, multimodal fusion improves early detection rates and re-
duces the risk of misdiagnosis or missed diagnosis, helping patients receive timely treat-
ment [7]. In research, it provides essential tools for exploring disease mechanisms, moni-
toring disease progression, and evaluating therapeutic outcomes. Therefore, studying 
multimodal imaging fusion has both practical relevance and wide application prospects. 
Globally, research on deep fusion networks for multimodal medical imaging started ear-
lier and has progressed rapidly [8]. Many academic groups and healthcare institutions 
have focused on developing efficient fusion algorithms and network structures [9]. For 
example, the team led by Dr. Yinsheng Li at the Shenzhen Institutes of Advanced Tech-
nology, Chinese Academy of Sciences, has conducted long-term work in medical imaging 
and artificial intelligence. By improving deep learning models such as convolutional neu-
ral networks (CNNs) and recurrent neural networks (RNNs), they achieved effective fu-
sion of MRI and CT data [10]. In brain disease diagnosis experiments, their fusion model 
increased diagnostic accuracy from 70% to 85% compared with single-modality ap-
proaches. Some advanced studies have already been applied in clinical settings. Large-
scale clinical trials have confirmed their value. In one study involving 1,000 cardiovascu-
lar patients, multimodal fusion diagnosis improved treatment response rates from 65% to 
78% [11]. In China, research in this area is also developing quickly. More universities and 
research institutes are investing in this field. Progress has been made in fusion strategies, 
model optimization and clinical integration [12]. Chinese researchers have proposed sev-
eral new methods, such as attention-based fusion, which improves the model’s ability to 
identify key information. In one comparative study, an attention-based fusion model 
achieved an ROC-AUC of 0.92 for lung tumor diagnosis, higher than the 0.85 from the 
model without attention mechanisms. In terms of architecture, some teams have devel-
oped end-to-end deep fusion networks with independent intellectual property rights, 
which improved diagnostic accuracy and efficiency [13]. Despite this progress, several 
core challenges remain. These include handling data heterogeneity across modalities, im-
proving algorithm robustness and generalization and enhancing model interpretability to 
make the outputs more understandable and usable for clinicians [14]. 

This study aims to develop an effective and accurate auxiliary diagnostic method for 
complex lesions using deep multimodal fusion networks. The main goals are: To improve 
the diagnostic accuracy of complex lesions and reduce misdiagnosis and missed diagnosis; 
To enhance the model’s ability to integrate and utilize multimodal imaging data; To ex-
plore effective model architectures and training strategies to improve performance and 
stability. To achieve these goals, this research combines theoretical analysis with experi-
mental validation. First, related theories in multimodal medical imaging, deep fusion net-
works, and fusion strategies were reviewed to provide a strong theoretical basis. Based 
on this, an end-to-end model integrating channel attention and multi-scale feature extrac-
tion was designed. The model was trained and optimized using publicly available multi-
modal datasets on gliomas and lung tumors. Comparative experiments were conducted 
with existing fusion methods. Finally, the effectiveness and advantages of the proposed 
method were validated through detailed analysis of experimental results. 

2. Methodology 
The diagnostic model developed in this study adopts an end-to-end architecture 

based on a multimodal deep fusion network [15]. In the input layer, data from different 
imaging modalities such as MRI, CT and PET undergo preprocessing steps including nor-
malization, cropping and registration to ensure data consistency [16]. In the fusion layer, 
a feature-level fusion strategy is employed. For each modality, a dedicated sub-network 
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is used to extract features. These features are then concatenated and passed through a 
channel attention mechanism, which reweights them to emphasize important information. 
The feature extraction layer processes the fused feature vectors using convolution and 
pooling operations with different kernel sizes [17]. This enables the extraction of high-
level features at multiple scales. In the classification and segmentation layers, the ex-
tracted features are used for diagnostic tasks. A fully connected layer combined with a 
Softmax classifier is applied for lesion classification. For segmentation, networks such as 
U-Net are used to identify lesion regions, supporting the final diagnostic decision. 

The model is trained on two multimodal datasets: one glioma dataset containing 200 
patient cases, sourced from the National New Generation Artificial Intelligence Open In-
novation Platform for Medical Imaging and one lung tumor dataset with 150 cases, de-
rived from the IRENE model developed by the Macau University of Science and Technol-
ogy, West China Hospital of Sichuan University, and the University of Hong Kong. Dur-
ing preprocessing, pixel values were normalized to the range [0, 1]. To reduce overfitting, 
data augmentation techniques were applied, including random rotation (± 15°), horizontal 
and vertical flipping (each with a probability of 0.5) and scaling (scaling range: 0.8 to 1.2). 
The Adam optimizer was used to update model parameters. The initial learning rate was 
set to 0.001, and an exponential decay strategy was applied, reducing the rate to 90% of 
its value every 50 epochs. Cross-entropy loss was used for the classification task, while 
Dice loss was used for the segmentation task [18]. The dataset was divided into training, 
validation, and test sets in a ratio of 70%, 15%, and 15%, respectively. The training set was 
used to update parameters, the validation set was used to monitor model behavior and 
avoid overfitting, and the test set was used to evaluate final model performance [19]. 
Model performance was further improved by tuning hyperparameters such as learning 
rate, network depth, and convolution kernel size. 

3. Experimental Design 
3.1. Datasets and Experimental Settings 

This study used multimodal datasets for glioma and lung tumors to conduct experi-
ments. The glioma dataset was collected from the National New Generation Artificial In-
telligence Open Innovation Platform for Medical Imaging. It contains data from 200 pa-
tients, including MRI (T1, T2, FLAIR and contrast-enhanced T1-weighted), CT and PET 
scans. All patients were pathologically diagnosed, and the dataset includes detailed an-
notations on tumor type, grade and lesion location. In general, low-grade gliomas appear 
as hyperintense regions with clear boundaries on T2-weighted MRI, while high-grade gli-
omas show enhancement and edema on contrast-enhanced T1-weighted MRI. The lung 
tumor dataset was derived from the IRENE model, developed by the Faculty of Medicine 
at Macau University of Science and Technology, West China Hospital of Sichuan Univer-
sity, and the University of Hong Kong. It includes CT and PET images from 150 patients. 
CT scans show the structure and shape of lung tissues and tumors, while PET scans indi-
cate metabolic activity [20]. All samples were confirmed through diagnostic and patho-
logical analysis, with clear labels for benign and malignant tumors. Malignant tumors 
show high uptake on PET images, typically with elevated standardized uptake values 
(SUV). To evaluate the model, this study compared it with several existing multimodal 
fusion algorithms: The weighted average method directly fuses pixel values from differ-
ent modalities but has limited ability to handle complex data. Its diagnostic accuracy for 
glioma was 78.5%; The PCA-based fusion algorithm reduces dimensionality and com-
bines features from different modalities. It captured some useful information, and its 
ROC-AUC in lung tumor diagnosis was 0.831; The MM-CNN model applies a specific 
network design for joint learning of multimodal features. In glioma segmentation, it 
achieved a Dice coefficient of 0.834; In this study, model performance was evaluated using 
classification accuracy, ROC-AUC and Dice coefficient to assess its effectiveness in diag-
nosing complex lesions. 
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3.2. Experimental Results 
To clearly demonstrate the performance of the proposed model and the comparison 

methods on the glioma and lung tumor datasets, the results are organized and presented 
in Table 1 and Table 2. 

Table 1. Results on the glioma dataset. 

Evaluation Met-
ric 

Proposed Model 
Weighted Aver-

aging 
PCA-Based 

Fusion 
MM-CNN 

Classification Ac-
curacy 

93.6% 78.5% 82.3% 88.7% 

ROC-AUC 0.952 0.813 0.845 0.901 

Dice coefficient 
(segmentation) 

0.885 (overall), 0.89 (low-
grade lesions), and 0.88 

(high-grade lesions) 
0.752 0.786 0.834 

Table 2. Experimental results on the lung tumor dataset. 

Evaluation Met-
ric 

Proposed Model 
Weighted Aver-

age 
PCA Fusion MM-CNN 

Classification Ac-
curacy 

92.1% 76.8% 80.5% 86.9% 

ROC-AUC 0.945 0.802 0.831 0.896 

Dice coefficient 
(segmentation) 

0.90 (regular tu-
mors), 0.86 (ir-

regular tumors) 
0.735 0.771 0.827 

3.3. Results Analysis 
As shown in Table 1, in the glioma dataset experiment, the proposed multimodal 

deep fusion network achieved a classification accuracy of 93.6%. According to the results 
of the independent-sample t-test, the improvement over the comparison algorithms was 
statistically significant (p < 0.05). Based on the confusion matrix, the correct classification 
rate for low-grade gliomas was 95%. Although some cases were confused due to similar 
imaging features, the model accurately identified them by utilizing complementary infor-
mation from multiple modalities [21]. For high-grade gliomas, the correct classification 
rate reached 92%. A small number of misclassifications were due to their regular shape 
and less distinct metabolic patterns. In terms of ROC-AUC, the model achieved 0.952, sig-
nificantly higher than other methods. For instance, when the false positive rate was 10%, 
the true positive rate reached 90%, indicating that the model effectively balanced false 
negatives and false positives. For lesion segmentation, the overall Dice coefficient was 
0.885. The Dice score for low-grade lesions reached 0.89. Although high-grade lesions 
have more complex boundaries, the Dice score still reached 0.88, showing clear improve-
ment compared with other methods. 

3.4. Analysis on Lung Tumor Dataset 
In the lung tumor dataset experiment, as presented in Table 2, the model achieved a 

classification accuracy of 92.1%. A chi-square test confirmed that this result was signifi-
cantly higher than those of the weighted averaging method, PCA-based fusion and MM-
CNN (p < 0.05). For benign tumors, the correct classification rate reached 94%. By combin-
ing information from both PET and CT images, the model reduced the number of false 
positives, including cases such as inflammatory pseudotumor [22,23]. For malignant tu-
mors, the correct classification rate was 91%. Although some early-stage micro-lung can-
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cers were misclassified due to their atypical metabolic features, the model still signifi-
cantly improved diagnostic accuracy [24]. In terms of ROC-AUC, the model scored 0.945, 
showing a clear advantage. At a false positive rate of 5%, the true positive rate reached 
85%, much higher than those of the comparison methods. For lesion segmentation, the 
Dice coefficient was 0.90 for tumors with regular shapes and 0.86 for irregular ones. Both 
results exceeded those of the baseline methods and provided useful guidance for treat-
ment planning. 

3.5. Results Analysis 
The experimental results indicate that the proposed multimodal deep fusion network 

shows clear advantages in diagnosing complex lesions. In both glioma and lung tumor 
tasks, the model achieved higher classification accuracy, ROC-AUC and segmentation 
Dice coefficients compared with other methods [25]. These improvements are mainly due 
to the use of a channel attention mechanism, which enhances features from the most rele-
vant channels. For instance, when fusing MRI, CT and PET data, the mechanism assigns 
greater weights to channels carrying key diagnostic information — such as those related 
to tumor metabolism in PET or tissue structure in MRI — thus improving the model’s 
ability to identify lesions [26]. Meanwhile, the multi-scale feature extraction component 
effectively captures lesion characteristics at different spatial resolutions. In glioma diag-
nosis, low-grade tumors tend to be smaller and structurally simpler, while high-grade 
tumors are usually larger with more complex internal patterns, such as necrosis or cystic 
areas [27]. The multi-scale strategy extracts feature across different levels, allowing the 
model to better understand the lesion structure and improve classification performance. 
In lung tumor diagnosis, this approach also proves useful. For small early-stage nodules, 
fine-scale features help detect subtle morphological or metabolic changes. For larger tu-
mors, coarse-scale features capture global shape and the spatial relationship between the 
tumor and surrounding tissues, supporting more accurate diagnosis. The end-to-end ar-
chitecture further enables the model to learn internal associations among different imag-
ing modalities. During training, it can automatically integrate complementary infor-
mation — such as soft-tissue contrast from MRI, anatomical and density information from 
CT and metabolic data from PET — to form a more comprehensive understanding of the 
lesion, thereby enhancing diagnostic effectiveness [28]. However, the model’s perfor-
mance still declines slightly when dealing with highly complex lesions, especially those 
involving comorbidities. For example, in lung tumors complicated by infection or pleural 
effusion, the resulting changes in imaging appearance — such as blurred boundaries or 
altered metabolism — may interfere with the model’s classification and segmentation ac-
curacy [29]. Future research may focus on refining the model structure. One potential di-
rection is to incorporate enhanced attention mechanisms that consider not only channel-
level information but also spatial relationships. Another is to develop improved fusion 
strategies, such as explicitly modeling interactions among different modalities during fea-
ture fusion, to improve performance in challenging clinical scenarios. 

4. Conclusion 
This study successfully developed an end-to-end multimodal deep fusion network 

that integrates a channel attention mechanism and multi-scale feature extraction, aiming 
to address the diagnostic challenges of complex lesions in medical imaging. Experimental 
results on publicly available glioma and lung tumor multimodal datasets showed that the 
proposed model significantly outperformed the weighted averaging method, PCA-based 
fusion algorithm, and MM-CNN in terms of classification accuracy, ROC-AUC, and Dice 
coefficient. In glioma diagnosis, the model achieved a classification accuracy of 93.6%, a 
ROC-AUC of 0.952, and an overall Dice coefficient of 0.885. In lung tumor diagnosis, the 
classification accuracy was 92.1%, the ROC-AUC reached 0.945, and the Dice coefficients 
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for tumors with regular and irregular shapes were 0.90 and 0.86, respectively. These re-
sults clearly demonstrate the effectiveness and superiority of the model in complex lesion 
diagnosis. The strength of this study lies in its ability to enhance focus on key features 
through the channel attention mechanism, to fully capture multi-scale characteristics of 
lesions through multi-scale feature extraction, and to support the learning of internal re-
lationships among multimodal data through the end-to-end architecture. These improve-
ments bring new momentum to the development of multimodal medical image fusion 
techniques and provide a novel and efficient solution for clinical multi-source image-as-
sisted diagnosis. This approach has the potential to significantly improve early detection 
of complex diseases and reduce the risk of misdiagnosis and missed diagnosis. 
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