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Abstract: With the ongoing advancement of industrial automation towards higher levels of intelli-
gence, such as increased use of machine learning and artificial intelligence for process optimization, 
multidimensional monitoring and real-time fault diagnosis of complex industrial processes have 
emerged as critical challenges for ensuring the reliable operation of production systems and the 
consistent quality of products. Among multivariate statistical process monitoring approaches, con-
ventional Principal Component Analysis (PCA) is inherently constrained by its linear projection 
mechanism, leading to significant performance degradation when addressing process data exhibit-
ing nonlinear characteristics. To overcome this limitation, this study proposes an Adaptive Kernel 
Principal Component Analysis (AKPCA) method based on kernel space mapping. By utilizing Mer-
cer kernel functions, the original process data is nonlinearly mapped into a Reproducing Kernel 
Hilbert Space (RKHS), thereby enhancing the separability of nonlinear features. Furthermore, a two-
tier fault diagnosis framework is established: the first tier employs an adaptive KPCA model inte-
grated with a sliding window mechanism for fault detection, while the second tier utilizes a Con-
tribution Analysis (CA) algorithm for fault source identification. To validate the robustness of the 
proposed method, we simulate four representative types of faults — bias faults, complete failures, 
offset faults, and precision degradation. Experimental results substantiate that the adaptive KPCA 
approach not only accurately detects faults but also effectively localizes fault sources through con-
tribution analysis. 

Keywords: Kernel Principal Component Analysis (KPCA); fault detection; contribution analysis; 
sensor fault diagnosis 
 

1. Introduction 
The increasing demand for quality monitoring and safe operation of industrial pro-

cesses over the past decades has continuously driven the advancement of fault detection 
and diagnosis (FDD) methodologies. As a representative of data-driven techniques, mul-
tivariate statistical methods have been widely applied in this domain, including Principal 
Component Analysis (PCA), Partial Least Squares (PLS), and the emerging Independent 
Component Analysis (ICA), among others [1-8]. Among these, PCA has become the most 
mainstream solution in process monitoring due to its ability to project high-dimensional 
noisy data onto a low-dimensional subspace that retains the major variance. 

However, there exists an inherent contradiction between the linear nature of conven-
tional PCA and the nonlinear characteristics of industrial systems, prompting researchers 
to explore nonlinear extensions such as kernel methods. Kernel Principal Component 
Analysis (KPCA) achieves this by mapping data into a high-dimensional feature space via 
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nonlinear kernel functions and performing PCA in that space, thus addressing a wide 
range of nonlinear scenarios through an eigenvalue decomposition. Although KPCA has 
demonstrated great potential in monitoring applications, it still suffers from two critical 
limitations:  

1) model construction requires storing a symmetric kernel matrix whose size de-
pends on the number of reference samples, resulting in increased computational 
complexity as the sample size grows. 

2) static models are unable to adapt to system dynamics, potentially leading to 
false alarms.  

Specifically, a KPCA model with fixed parameters may incur significant monitoring 
errors due to gradual process parameter drifts. 

To overcome these shortcomings, such as the limitations of static models in adapting 
to process dynamics, adaptive methodologies have garnered increasing attention in recent 
years. The adaptive KPCA approach proposed in achieves fault diagnosis by dynamically 
updating monitoring statistics [9]. Existing adaptive frameworks can be broadly catego-
rized into two types: real-time updating mechanisms for the kernel matrix and adaptive 
control chart strategies (such as adaptive Hotelling's 𝑇𝑇² statistics), both of which have 
demonstrated superior statistical performance compared to traditional static methods. 

This research introduces an innovative fault detection and isolation approach for 
nonlinear and time-varying systems, extending the adaptive control chart concept 
through the use of kernel principal component analysis (KPCA). The method distin-
guishes itself by embedding multivariate exponentially weighted moving average 
(MEWMA) techniques to capture shifts in the process mean, and by merging this pre-
dicted drift information with KPCA-derived principal components to formulate monitor-
ing statistics that better adapt to dynamic system behavior. 

2. Adaptive KPCA-Based Process Monitoring Method 
Kernel Principal Component Analysis (KPCA), as a nonlinear extension of Principal 

Component Analysis (PCA), fundamentally aims to project the original data into a high-
dimensional feature space 𝐻𝐻 via a nonlinear mapping ∅ , followed by performing linear 
PCA in this transformed space. 

Let us denote a dataset consisting of samples 𝑥𝑥𝑗𝑗 ∈ 𝑅𝑅1×𝑛𝑛, where 𝑗𝑗 = 1, . . . ,𝑀𝑀 with M 
indicating the number of total observations. The associated covariance matrix 𝐶𝐶 ∈ 𝑅𝑅𝑀𝑀×𝑀𝑀 
within the feature space is given by: 

𝐶𝐶 = 1
𝑀𝑀
∑ ∅(𝑥𝑥𝑗𝑗)∅T(𝑥𝑥𝑗𝑗)𝑀𝑀
𝑗𝑗=1           (1.1) 

Here, 𝑥𝑥𝑗𝑗 represents the j-th data point in the feature space, where the data has been 
standardized to have a mean of zero and a variance of one. The eigenvalues and eigen-
vectors corresponding to the covariance matrix C in this space can be obtained by solving 
the following eigenvalue decomposition problem: 

λ𝑘𝑘𝑣𝑣𝑘𝑘 = 𝐶𝐶𝑣𝑣𝑘𝑘            (1.2) 
Where λ𝑘𝑘 ∈ 𝑅𝑅and 𝑣𝑣𝑘𝑘 ∈ 𝑅𝑅𝑀𝑀×1 represent the k-th eigenvalue and its associated eigen-

vector. A collection of real-valued coefficients 𝛼𝛼𝑘𝑘𝑖𝑖 ∈ 𝑅𝑅, with 𝑖𝑖 = 1, . . . ,𝑀𝑀, such that: 
𝑣𝑣𝑘𝑘 = ∑ 𝛼𝛼𝑘𝑘𝑖𝑖 ∅T(𝑥𝑥𝑗𝑗)𝑀𝑀

𝑖𝑖=1           (1.3) 
Since directly accessing ∅(𝑥𝑥) is typically infeasible, the eigenvalue decomposition of 

the covariance matrix 𝐶𝐶 is instead reformulated through the use of the Gram kernel ma-
trix 𝐾𝐾 ∈ 𝑅𝑅𝑀𝑀×𝑀𝑀, which is defined as: 

[𝐾𝐾]𝑖𝑖𝑗𝑗 =< ∅(𝑥𝑥𝑖𝑖),∅(𝑥𝑥𝑗𝑗) >= 𝑘𝑘(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) → 𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑀𝑀     (1.4) 
Due to this fundamental property, the inner product in the feature space can be eval-

uated indirectly via a suitable kernel function 𝑘𝑘(𝑥𝑥,𝑦𝑦) = 〈(∅(𝑥𝑥𝑖𝑖),∅(𝑥𝑥𝑗𝑗))〉 defined in the in-
put domain. Commonly adopted kernel functions include the polynomial kernel, sigmoid 
kernel, and radial basis function (𝑅𝑅𝑅𝑅𝑅𝑅) kernel, each of which adheres to Mercer's theorem. 

Prior to performing Kernel PCA (KPCA), it is necessary to center the data in the fea-
ture space. This can be accomplished by substituting the kernel matrix K with: 
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𝐾𝐾� = 𝐾𝐾 − 1𝑀𝑀𝐾𝐾 − 𝐾𝐾1𝑀𝑀 + 1𝑀𝑀𝐾𝐾1𝑀𝑀        (1.5) 
Where： 

1𝑀𝑀 = 1
𝑀𝑀
�

⋯
⋮ ⋱ ⋮

⋯
� ∈ 𝑅𝑅𝑀𝑀×𝑀𝑀         (1.6) 

The ultimate step in the KPCA approach involves solving the following eigenvalue 
problem: 

𝑀𝑀λα = 𝐾𝐾�α            (1.7) 
For the standard orthogonal eigenvectors 𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑀𝑀 and the corresponding eigen-

values 𝜆𝜆1 ≥ 𝜆𝜆2 ≥. . .≥ 𝜆𝜆𝑀𝑀, dimensionality reduction is performed by preserving the top d 
eigenvectors. The selection of the number of principal components to retain is guided by 
the following criterion: 

∑ λ𝑘𝑘
𝑑𝑑
𝑘𝑘=1
∑ λ𝑖𝑖𝑀𝑀
𝑗𝑗=1

× 100 ≥ 𝑡𝑡ℎ𝑐𝑐,𝑑𝑑＜𝑀𝑀         (1.8) 

In the equation, 𝑡𝑡ℎ𝑐𝑐 represents a threshold specified by the user, typically given as 
a percentage. 

For each 𝑘𝑘 = 1, . . . ,𝑑𝑑, the 𝑗𝑗-th principal component score of a new sample 𝑥𝑥 ∈ 𝑅𝑅1×𝑛𝑛 
is computed by projecting 𝑡𝑡𝑘𝑘(𝑥𝑥) onto the corresponding eigenvector 𝑣𝑣𝑘𝑘 within the fea-
ture space 𝑅𝑅, as shown below: 

𝑡𝑡𝑘𝑘(𝑥𝑥) = 〈𝑣𝑣𝑘𝑘,∅(𝑥𝑥)〉 = ∑ 𝛼𝛼𝑘𝑘𝑖𝑖𝑀𝑀
𝑖𝑖=1 〈∅(𝑥𝑥𝑖𝑖),∅(𝑥𝑥)〉       (1.9) 

In the equation, 𝛼𝛼𝑖𝑖𝑘𝑘 represents the i-th component of the eigenvector 𝛼𝛼𝑘𝑘. 
To monitor system health, Hotelling's 𝑇𝑇2 is commonly used to monitor the system 

portion of the dataset, defined as: 
𝑇𝑇2(𝑥𝑥) = [𝑡𝑡1(𝑥𝑥), … , 𝑡𝑡𝑑𝑑(𝑥𝑥)]Λ−1[𝑡𝑡1(𝑥𝑥), … , 𝑡𝑡𝑑𝑑(𝑥𝑥)]𝑇𝑇      (1.10) 
In the equation, Λ = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝜆𝜆1, … , 𝜆𝜆𝑑𝑑), the 100(1 − 𝛽𝛽)% confidence level of 𝑇𝑇2 can be 

determined by the F-distribution. 
𝑇𝑇𝑙𝑙𝑖𝑖𝑖𝑖2 = 𝑑𝑑(𝑀𝑀−1)

𝑀𝑀−𝑑𝑑
𝑅𝑅𝑑𝑑,𝑀𝑀−𝑑𝑑,𝛽𝛽          (1.11) 

Where 𝑅𝑅𝑑𝑑,𝑀𝑀−𝑑𝑑,𝛽𝛽  denotes the critical value from the F-distribution at a confidence 
level 𝛽𝛽, with degrees of freedom (𝑑𝑑,𝑀𝑀 − 𝑑𝑑), respectively. 

Hotelling's 𝑇𝑇2 statistic, as a classical multivariate process monitoring indicator, has 
been widely applied in the field of industrial fault detection and diagnosis. This statistic 
effectively identifies abnormal changes in the system's operational state by analyzing the 
covariance structure between process variables. In practical implementation, when the T² 
statistic obtained from online monitoring exceeds the preset control limits, the system can 
determine that a fault condition exists. The determination of control limits requires a bal-
ance between the false alarm rate (Type I error) and the missed detection rate (Type II 
error), and is typically optimized based on the statistical distribution characteristics of 
normal operating condition data, combined with hypothesis testing theory. 

Equation (1.10) shows that the traditional KPCA monitoring statistic is based solely 
on the sum of squared score vectors of the current sample (i.e., the 𝑇𝑇² statistic) for process 
monitoring, without fully considering the directional information of potential mean shifts 
in dynamic industrial processes. This inherent flaw leads to the traditional method being 
sensitive only to significant process shifts, while having limited ability to detect gradual, 
small faults. To overcome this limitation, this paper proposes a novel adaptive KPCA 
monitoring statistic, which is innovative in three main aspects: first, by constructing an 
augmented data matrix to effectively represent the dynamic characteristics of the process; 
second, by using whitening transformation to process kernel principal components, so 
that the transformed covariance matrix has the properties of a unit matrix; and third, by 
utilizing a multivariate exponentially weighted moving average (MEWMA) technique 
that incorporates dynamic weights to reflect temporal process changes, thereby facilitat-
ing the development of an adaptive aggregated monitoring statistic. 

To analyze the temporal behavior of the process, the initial step involves extending 
each observation vector by concatenating it with the preceding 𝑙𝑙 observations, so that: 

𝑥𝑥𝑘𝑘𝑙𝑙 = [𝑥𝑥𝑘𝑘, 𝑥𝑥𝑘𝑘−1, … , 𝑥𝑥𝑘𝑘−𝑙𝑙] ∈ 𝑅𝑅1×𝑖𝑖(𝑙𝑙+1)        (1.12) 
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Where 𝑥𝑥𝑘𝑘  is within the range of sample 𝑘𝑘(𝑘𝑘 =  1, . . . ,𝑀𝑀). Then, the augmented 
data matrix is generated as: 

𝑋𝑋𝑙𝑙 = �
𝑥𝑥𝑙𝑙+1
𝑙𝑙

𝑥𝑥𝑙𝑙+2
𝑙𝑙

⋮
𝑥𝑥𝑀𝑀
𝑙𝑙
� = �

𝑥𝑥𝑙𝑙+1
𝑥𝑥𝑙𝑙+2
⋮

𝑥𝑥𝑀𝑀

𝑥𝑥𝑙𝑙
𝑥𝑥𝑙𝑙+1
⋮

𝑥𝑥𝑀𝑀−1

⋯
⋯
⋱
⋯

𝑥𝑥1
𝑥𝑥2
⋮

𝑥𝑥𝑀𝑀−1

�         (1.13) 

The dataset should be standardized to have a mean of zero and a variance of one. 
Notably, an automatic method for selecting the parameter 𝑙𝑙 has been introduced in prior 
work, where it has been shown that setting 𝑙𝑙 =  1 𝑜𝑜𝑜𝑜 2 is generally adequate to capture 
the changing dynamics of the majority of processes [10]. 

The radial basis kernel transformation matrix 𝑋𝑋𝑙𝑙 undergoes eigenvalue decomposi-
tion, and the centered kernel matrix 𝐾𝐾� ∈ 𝑅𝑅(𝑀𝑀−𝑙𝑙)×(𝑀𝑀−𝑙𝑙) can subsequently be calculated us-
ing the following equation (1.5). The largest 𝑑𝑑  eigenvalues (denoted as Λ =
𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝜆𝜆1, … , 𝜆𝜆𝑑𝑑) ∈ 𝑅𝑅𝑑𝑑×𝑑𝑑) and the corresponding eigenvectors (denoted as 𝐻𝐻 = [𝛼𝛼1, …,𝛼𝛼𝑑𝑑] ∈
𝑅𝑅(𝑀𝑀−1)×𝑑𝑑) can be retained, which are obtained using the empirical criterion from equation 
(1.8). 

The radial basis kernel transformation matrix 𝑋𝑋𝑙𝑙 undergoes eigenvalue decomposi-
tion, after which the mean-adjusted kernel matrix 𝐾𝐾� ∈ 𝑅𝑅(𝑀𝑀−𝑙𝑙)×(𝑀𝑀−𝑙𝑙) is calculated accord-
ing to equation (1.5). The top ddd eigenvalues, arranged in the diagonal matrix Λ =
𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝜆𝜆1, … , 𝜆𝜆𝑑𝑑) ∈ 𝑅𝑅𝑑𝑑×𝑑𝑑 ), along with their associated eigenvectors 𝐻𝐻 = [𝛼𝛼1, …,𝛼𝛼𝑑𝑑] ∈
𝑅𝑅(𝑀𝑀−1)×𝑑𝑑, are selected based on the empirical rule given in equation (1.8). 

Furthermore, to transform the data toward a Gaussian distribution, the high-dimen-
sional data must first be whitened and subsequently mapped onto the unit sphere through 
normalization. The whitened KPCA score vector 𝑧𝑧𝑘𝑘  for a given test sample 𝑥𝑥 can be 
computed using the following expression: 

𝑧𝑧𝑘𝑘(𝑥𝑥) = √𝑀𝑀Λ−1𝐻𝐻𝑇𝑇�𝑘𝑘�(𝑥𝑥1, 𝑥𝑥), … , 𝑘𝑘�(𝑥𝑥𝑀𝑀, 𝑥𝑥)�𝑇𝑇       (1.14) 
This ensures that 𝑧𝑧𝑘𝑘(𝑥𝑥) ∈ 𝑅𝑅𝑑𝑑 satisfies 𝐸𝐸{𝑧𝑧𝑘𝑘(𝑥𝑥)𝑧𝑧𝑘𝑘𝑇𝑇(𝑥𝑥)} = 𝐼𝐼, where its covariance ma-

trix is the identity matrix. 
As theoretical analysis shows, traditional KPCA monitoring methods construct mon-

itoring statistics based solely on the instantaneous sample amplitude information (i.e., 𝑇𝑇² 
statistic), without effectively integrating the directional features of process mean shifts. In 
the case of missing prior information in multivariate process monitoring (especially when 
the direction of process shifts is unknown), based on multivariate statistical process con-
trol (MSPC) theory, it is recommended to use the following standard form of the Ho-
telling's 𝑇𝑇² control chart: 

𝑇𝑇2(𝑥𝑥) = 𝑧𝑧𝑘𝑘𝑇𝑇(𝑥𝑥)𝑧𝑧(𝑥𝑥) > 𝑐𝑐           (1.15) 
Here, 𝑐𝑐  represents the control threshold. When the statistic 𝑇𝑇2  surpasses this 

threshold, it indicates the presence of a fault within the system. 
If the direction of the process mean shift is identified, the multivariate control chart 

is adaptable to various types of shift patterns. Assuming the process mean changes from 
the initial value 𝜇𝜇₀ = 0 to a targeted shift 𝜇𝜇₁ = 𝑚𝑚, the associated statistical hypothesis 
test can be formulated as follows: 

�𝐻𝐻0:𝜇𝜇 = 0
𝐻𝐻1:𝜇𝜇 = 𝑚𝑚            (1.16) 

Here, 𝜇𝜇 denotes the process mean, while 𝑚𝑚 indicates the anticipated shift. To eval-
uate the hypothesis, a likelihood ratio test is employed, with the likelihood function 
𝑓𝑓(𝑧𝑧𝑘𝑘|𝜇𝜇) defined as follows: 

Γ𝑘𝑘 = 𝑓𝑓�𝑧𝑧𝑘𝑘�𝐻𝐻1�
𝑓𝑓�𝑧𝑧𝑘𝑘�𝐻𝐻0�

= 𝑒𝑒𝑥𝑥𝑒𝑒 �𝑚𝑚𝑇𝑇𝑧𝑧𝑘𝑘(𝑥𝑥) − 1
2
𝑚𝑚𝑇𝑇𝑚𝑚�       (1.17) 

Where 𝑓𝑓(. |. ) represents the pmf, which is specified at 𝑧𝑧𝑘𝑘(𝑥𝑥) for the actual observa-
tions of 𝜇𝜇. By taking the natural logarithm of (17), the following expression can be derived: 

𝐿𝐿𝑘𝑘 = ln �𝑓𝑓�𝑧𝑧𝑘𝑘�𝐻𝐻1�
𝑓𝑓�𝑧𝑧𝑘𝑘�𝐻𝐻0�

� = 𝑚𝑚𝑇𝑇𝑧𝑧𝑘𝑘(𝑥𝑥) − 1
2
𝑚𝑚𝑇𝑇𝑚𝑚       (1.18) 

Using the likelihood ratio above, the following statistic is derived: 
𝑇𝑇2(𝑥𝑥) = 𝑚𝑚𝑇𝑇𝑧𝑧𝑘𝑘(𝑥𝑥) − 1

2
𝑚𝑚𝑇𝑇𝑚𝑚 > 𝑐𝑐        (1.19) 
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Since 𝑚𝑚 is a constant value, it can be rewritten as: 
𝑇𝑇2(𝑥𝑥) = 𝑚𝑚𝑇𝑇𝑧𝑧𝑘𝑘(𝑥𝑥) > 𝑐𝑐′          (1.20) 
Where: 
𝑐𝑐′ = 𝑐𝑐 + 1

2
𝑚𝑚𝑇𝑇𝑚𝑚           (1.21) 

The obtained 𝑇𝑇2 chart is designed for scenarios where the process shift remains con-
stant. That is, after a change occurs, both its size and direction are assumed to be fixed and 
known. In practical industrial settings, however, such shifts are typically unknown and 
may vary over time. Consequently, investigating the effectiveness of the 𝑇𝑇2 chart when 
drift information is unavailable is highly important. 

By modeling the shift as an offset occurring at sample 𝑘𝑘, the control chart evaluates 
the process condition at each sample point through testing the following hypothesis: 

� 𝐻𝐻0:𝜇𝜇 = 0
𝐻𝐻1:𝜇𝜇 = 𝑚𝑚𝑘𝑘

            (1.22) 

Similar to the constant shift, a new statistical chart can be obtained as follows: 
𝐴𝐴𝑇𝑇2(𝑥𝑥) = 𝑚𝑚𝑇𝑇𝑧𝑧𝑘𝑘(𝑥𝑥) − 1

2
𝑚𝑚𝑇𝑇𝑚𝑚 > 𝑐𝑐        (1.23) 

Continuous updating and repeated application of the control chart to the multivari-
ate process leads to improved expected performance. Because the true mean shift evolves 
over time, the estimated mean shift is recursively updated with incoming data, thereby 
rendering the process adaptive. 

The SPE is defined as follows: 
𝑆𝑆𝑆𝑆𝐸𝐸 = �∅(𝑥𝑥) − ∅𝑝𝑝(𝑥𝑥)�2         (1.24) 
In the equation, ∅(𝑥𝑥) is the sum of the products of the score vectors and correspond-

ing eigenvectors for all non-zero eigenvalues, which simplifies to: 
𝑆𝑆𝑆𝑆𝐸𝐸 = ∑ 𝑡𝑡𝑗𝑗2𝑛𝑛

𝑗𝑗=1 − ∑ 𝑡𝑡𝑗𝑗2
𝑝𝑝
𝑗𝑗=1          (1.25) 

In the equation, 𝑛𝑛  represents the number of non-zero eigenvalues, and 𝑒𝑒  is the 
number of principal components. The confidence limit of the SPE can be calculated based 
on its approximate distribution: 

SPE𝛼𝛼 ∼ 𝑑𝑑𝜒𝜒ℎ2            (1.26) 
In the equation, 𝛼𝛼 represents the significance level, and 𝑑𝑑 and h denote the weight 

parameter and degrees of freedom of the 𝑆𝑆𝑆𝑆𝐸𝐸, respectively. Assuming 𝑑𝑑 and 𝑏𝑏 are the 
estimated mean and variance of the 𝑆𝑆𝑆𝑆𝐸𝐸, 𝑑𝑑 and ℎ can be approximated as 𝑑𝑑 = 𝑏𝑏/2𝑑𝑑 
and ℎ = 2𝑑𝑑2/𝑏𝑏. Similar to the PCA method, the 𝑆𝑆𝑆𝑆𝐸𝐸, which is frequently used in sensor 
fault diagnosis, is selected as the monitoring index here. 

Since the positioning accuracy of the angle sensors has a significant impact on system 
performance, this study employs a dynamic balance model based on Kernel Principal 
Component Analysis (KPCA) for fault diagnosis of four angle sensor variables. In terms 
of model parameter selection, the Gaussian kernel function width parameter is optimized 
and determined as 𝜎𝜎 = 10 using cross-validation [11]. For experimental data collection, 
330 sets of measurement values from the thruster tilt angle sensor were selected as sample 
data. To comprehensively assess the model's performance, the study conducted a system-
atic simulation of four typical fault modes of the sensor, including bias fault, complete 
failure, drift fault, and accuracy degradation fault. The Square Prediction Error (SPE) 
monitoring results for each fault mode are shown in the Figure 1. 
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Figure 1. The Squared Prediction Error (SPE) for each fault mode. 

From Figure 1, it can be observed that all four common faults of the sensor can be 
effectively monitored using the SPE indicator of KPCA. However, the type and location 
of the fault still require further diagnosis. 

3. T² Contribution-Based Fault Diagnosis 
When the SPE (Squared Prediction Error) monitoring index detects an abnormality 

in the system, it is necessary to further identify the faulty variables and analyze the root 
causes of the fault to complete the full fault diagnosis process. However, the adaptive 
KPCA method has two inherent limitations in nonlinear feature extraction: firstly, the 
method does not rely on an explicit nonlinear transformation function; secondly, the ker-
nel function mapping results in a loss of correspondence between the original measure-
ment space and the feature space variables. To address this issue, this study proposes 
using contribution plot analysis for fault tracing: firstly, the contribution of each original 
measurement variable to the fault is calculated, and then, by comparing the relative 
change rate of each variable's contribution before and after the fault, accurate separation 
and localization of the fault variables are achieved, providing a reliable basis for subse-
quent fault mechanism analysis. The contribution of the 𝑗𝑗-th original measurement vari-
able to the T² statistic is defined as: 

𝑐𝑐𝑜𝑜𝑛𝑛𝑡𝑡𝑗𝑗,𝑖𝑖 = ∑ �𝑡𝑡𝑖𝑖𝑇𝑇𝑥𝑥𝑗𝑗 ∕ 𝜆𝜆𝑖𝑖�
𝑝𝑝
𝑖𝑖=1           (1.27) 

The percentage change in its contribution is: 

�
Δ𝑐𝑐𝑒𝑒𝑒𝑒𝑜𝑜𝑗𝑗 = 𝑐𝑐𝑒𝑒𝑒𝑒𝑜𝑜𝑡𝑡𝑓𝑓,𝑗𝑗 − 𝑐𝑐𝑒𝑒𝑒𝑒𝑜𝑜𝑡𝑡𝑛𝑛,𝑗𝑗

𝑐𝑐𝑒𝑒𝑒𝑒𝑜𝑜𝑡𝑡𝑓𝑓
𝑡𝑡𝑛𝑛,𝑗𝑗� =

𝑐𝑐𝑛𝑛𝑡𝑡𝑛𝑛𝑗𝑗,𝑖𝑖
∑ 𝑐𝑐𝑛𝑛𝑡𝑡𝑛𝑛𝑗𝑗,𝑖𝑖
𝑠𝑠𝑛𝑛
𝑗𝑗=1

         (1.28) 

In the formula, 𝑒𝑒 represents the number of principal components, 𝑡𝑡𝑖𝑖 and 𝑥𝑥𝑗𝑗 (stand-
ardized) represent the 𝑖𝑖-th nonlinear principal component and the 𝑗𝑗-th sensor measure-
ment variable, 𝜆𝜆𝑖𝑖 is the 𝑖𝑖-th eigenvalue, 𝑡𝑡𝑓𝑓 and 𝑡𝑡𝑛𝑛 represent the moments when the sen-
sor has and has not failed, and 𝑠𝑠𝑛𝑛 is the number of sensors. 

Based on the adaptive KPCA fault diagnosis model established earlier, after detecting 
a system fault using the SPE statistic, further identification of the fault source is required. 
To this end, this paper employs a contribution analysis method, which calculates the per-
centage change in the contribution of each sensor variable before and after the fault oc-
currence using equation (1.28) (as shown in the Figure 2). This method quantifies the rel-
ative contribution change of each variable under fault conditions, enabling the effective 
separation and localization of the fault variables. 
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Figure 2. Fault Variable Contribution Percentage Change Chart. 

As shown in the figure, by comparing the contribution percentage changes of each 
sensor under the four fault modes, it can be observed that after the fault occurs, the con-
tribution of a particular variable shows a significant spike. It is worth noting that the cor-
responding angle sensor is exactly the fault injection point set in the experiment. This re-
sult validates the effectiveness of the fault separation method based on contribution anal-
ysis. The experimental data indicate that the adaptive KPCA diagnostic model developed 
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in this study can reliably detect typical sensor faults such as bias faults, complete failure, 
offset faults, and accuracy degradation, and accurately locate the faulty sensor. 

4. Diagnostic Examples 
When analyzing the multi-angle sensor dataset using the adaptive KPCA diagnostic 

model, it was observed that the Squared Prediction Error (SPE) statistic continuously ex-
ceeded the control limits, indicating the presence of abnormal sensor conditions.  

As shown in the Figure 3, by analyzing the time series data of 320 sampling points 
before and after the fault occurrence, it can be seen that when the system enters a fault 
state, the SPE statistic surpasses the preset monitoring threshold. This pattern aligns with 
the typical evolution characteristics of sensor faults, validating the effectiveness of the 
proposed adaptive KPCA model. 

 
Figure 3. Sensor4-Analysis of Variable Contribution Percentages by Fault Type. 

Subsequently, the variable contribution percentages of each sensor before and after 
the fault occurrence were calculated to quantify the fault characteristics. The results show 
that when the system experiences a deviation fault, the contribution percentage of the 4th 
sensor's variable significantly increases. This characteristic can serve as an important basis 
for diagnosing faults in this sensor (see Figure 4). 

 
Figure 4. Fault Variable Contribution Percentage Change Chart. 
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5. Conclusion 
Compared to traditional PCA methods, the adaptive KPCA method demonstrates 

significant advantages in dimensionality reduction in nonlinear feature spaces. This 
method not only offers a wider range of principal component selection but also effectively 
handles nonlinear problems, achieving accurate classification of different types of faults. 
In sensor fault diagnosis for complex control systems with strong nonlinear characteristics, 
adaptive KPCA exhibits excellent performance by mapping fault data to a high-dimen-
sional feature space for feature extraction. Simulation results show that, based on tests of 
four typical fault types, the adaptive KPCA method combined with the SPE statistic effec-
tively enables sensor fault monitoring. Further analysis indicates that by monitoring the 
percentage changes in each sensor's variable contribution, it is possible to not only accu-
rately identify faulty variables but also precisely locate the fault source and analyze its 
causes. Notably, this method demonstrates exceptional diagnostic stability for faults in-
volving the degradation of sensor accuracy. Experimental data confirm that the fault di-
agnosis performance of the adaptive KPCA method is significantly superior to traditional 
linear PCA methods. 
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