
European Journal of Business,
Economics & Management

Vol. 1 No. 3 2025

Vol. 1 No. 3(2025) 104

Article

Research on Cloud Computing Resource Scheduling Strategy
Based on Big Data and Machine Learning
Jiaying Huang 1,*

1 EC2 Core Platform, Amazon.com Services LLC, Seattle, WA, 98121, United States

* Correspondence: Jiaying Huang, EC2 Core Platform, Amazon.com Services LLC, Seattle, WA, 98121, United
States

Abstract: Optimizing the efficient scheduling of cloud platforms is crucial for enhancing the perfor-
mance and resource utilization of these platforms. The intelligent scheduling optimization frame-
work proposed in this article combines big data and deep learning technologies, which can effec-
tively solve a series of severe challenges in cloud platform resource scheduling, such as redundant
resource preparation, inaccurate capacity estimation, and high scheduling costs. Suggest building a
multidimensional feature model that combines historical and real-time monitoring information, and
using LSTM for accurate resource prediction. Based on this result, a reinforcement learning based
automatic adjustment hybrid scheduling algorithm was designed to achieve intelligent dynamic
scheduling of different resources. Meanwhile, a graph partitioning mechanism is adopted to reduce
scheduling complexity and improve system scalability. On the Google Cluster Trace dataset, the
proposed solution can significantly improve resource utilization, increasing it from raw utilization
to 21.5%, reducing the average waiting time of tasks by 18.3%, and lowering SLA default rates by
13%. The deployment experiment in the Kubernetes environment further validated the feasibility
and effectiveness of the proposed solution. The research results provide evidence and understand-
ing for the application of learning based intelligent scheduling technology in cloud infrastructure.

Keywords: cloud computing; resource scheduling; machine learning

1. Introduction
Resource scheduling is the core of cloud service platforms and has a significant im-

pact on the efficiency, service quality, and utilization of cloud service systems. Traditional
scheduling strategies are unable to meet the constantly changing task loads, diverse re-
source types, and complex business environments, resulting in unnecessary resource
waste, service delays, and other issues. In recent years, big data and machine learning
technologies have provided new ideas for establishing predictive models based on histor-
ical operations, real-time monitoring data, etc., and further improving scheduling strate-
gies through deep learning and reinforcement learning to achieve dynamic management
of multidimensional resources such as computing and storage. This article attempts to
construct an intelligent scheduling framework based on big data and machine learning
models, proposes an efficient cloud service platform resource scheduling strategy, and
verifies its significant effects in improving utilization, shortening waiting time, and ensur-
ing service quality through implementation, providing a theoretical basis and practical
means for cloud computing intelligent scheduling.

Received: 14 August 2025

Revised: 27 August 2025

Accepted: 10 September 2025

Published: 13 September 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Open Access

European Journal of Business, Economics & Management https://pinnaclepubs.com/index.php/EJBEM

Vol. 1 No. 3(2025) 105

2. Overview of Cloud Computing Resource Scheduling
Cloud computing resource scheduling refers to the dynamic configuration of com-

puting, storage, and network resources on a cloud platform based on resource require-
ments and system conditions for resource allocation. The scheduling objects include vir-
tual machines, containers, queues, etc., which consist of resource identification, task
matching, priority judgment, execution order decision-making, and other processes. Due
to the dynamic and diverse nature of resource scheduling in cloud computing environ-
ments, the scheduler should make scheduling decisions in a short period of time in order
to maintain system operation [1]. The implementation of scheduling strategies relies on
the platform's resource abstraction mechanism, monitoring methods, and scheduling al-
gorithms, aiming to select the optimal strategy among many feasible scheduling options
based on real-time system status and task characteristics. Resource scheduling can be
roughly divided into centralized and distributed scheduling. Centralized scheduling is
fully managed by a central decision controller, while distributed scheduling delegates the
decision-making power of resource scheduling to various branch nodes to improve the
concurrency of system scheduling. Scheduling algorithms can be divided into two forms
in practical applications: static scheduling and dynamic scheduling. Static scheduling re-
lies on the status information submitted by tasks to make decisions, while dynamic sched-
uling optimizes resource scheduling strategies through real-time status.

3. Resource Scheduling Issues in Cloud Computing Platforms
3.1. Mismatch between Reserved Resources and Actual Needs

In actual cloud computing platforms, when executing scheduling tasks, the scheduler
generally requires the size of CPU and memory resources to allocate corresponding re-
sources based on this. However, due to the lack of real-time monitoring of resource con-
sumption, fixed allocation methods are mostly used for resource configuration. Therefore,
in order to ensure task submission, the actual demand is often exaggerated, resulting in
many unused reserved resources [2]. In this way, not only does it result in resource waste,
but it also causes uneven distribution of resources. This phenomenon of "disconnection
between resource request and usage" is quite common in containers represented by Ku-
bernetes. Some tasks that provide long-term use of a small amount of resources can always
be scheduled into the task queue with higher priority, blocking the entry of short tasks,
which leads to unsatisfactory resource allocation results.

3.2. Inaccurate Load Forecasting
In the process of resource reservation and task sorting in scheduling systems, some

traditional prediction methods often fail to obtain sufficiently accurate results. Prediction
methods such as average value and nearest neighbor sampling have poor ability to iden-
tify abnormal peaks, period reversals, and long short period overlaps in load sequences.
Due to the lack of time series characteristics in the prediction model itself, it is sensitive to
input value jitter, which can cause prediction anomalies under high load conditions and
affect scheduling decisions. If the prediction is too conservative, it will lead to scheduling
queue congestion; If the prediction is too aggressive, it will waste a lot of resources and
affect subsequent scheduling tasks. Although some platforms have also adopted window
based calibration methods, the effect is not significant under conditions of multi tenancy
and heterogeneous loads [3].

3.3. Unequal Allocation of Computing and Storage Resources
In the scenario of multi resource collaborative scheduling, the correlation between

computing resources (CPU, memory) and storage space (disk) is strong, and most sched-
ulers lack the ability to simultaneously consider and adjust the behavior of both. Tradi-
tional scheduling programs often prioritize the selection of tasks based on the reserved
capacity of the host, without considering whether the input data required for this task

https://pinnaclepubs.com/index.php/EJBEM

European Journal of Business, Economics & Management https://pinnaclepubs.com/index.php/EJBEM

Vol. 1 No. 3(2025) 106

exists on the destination host, which can lead to a large amount of data migration and
network congestion problems. Especially in batch processing tasks with special data re-
quirements, if the scheduling results do not pay attention to the I/O bottleneck problem,
it is possible to keep the job in a waiting state for a long time. In addition, due to the
different forms of task loads, the scheduler is required to distinguish the mutual con-
straints and compatibility of different resources. Existing platform scheduling methods
are often based on linear calculation of weight coefficients, lacking the ability to model
resource structures and cannot implement multidimensional scheduling for different re-
sources [4].

3.4. High Computational Complexity
Scheduling decisions in the system are manifested as high-dimensional constraint

combination optimization. In the cloud platform where multiple tasks exist at the same
time, complex node architecture, and policy dimensions are rich, the scheduler needs to
analyze and judge a large number of states in a very short time. The task combination for
each scheduling cycle may consist of hundreds or thousands of tasks and thousands of
nodes, and the scheduler needs to perform multiple resource filtering, condition checking,
and priority evaluation, resulting in heavy computational tasks. Compared to traditional
single-objective scheduling, modern scheduling systems often have multi-objective syn-
chronous optimization, such as maximum resource utilization, minimum SLA violation
rate, fastest cold start time, etc., resulting in overly dispersed decision paths. In addition,
in order to facilitate the modular design of scheduling, the scheduler itself will be divided
into multiple steps to complete, and each step needs to ensure the consistency of the state
and the interaction rules between modules, making the computing task more cumber-
some.

4. Optimization Strategies for Resource Scheduling in Cloud Computing Platforms
To solve the problems of low resource utilization and slow scheduling response, this

paper establishes an intelligent optimization framework that integrates big data, deep
learning, and graph partitioning mechanisms. The optimization strategy flow of resource
scheduling in cloud computing platforms is shown in Figure 1 below:

Figure 1. Flow Chart of Resource Scheduling Optimization Strategy for Cloud Computing Plat-
form.

This process is built on historical and real-time data, constructing multidimensional
feature inputs, and using LSTM for load trend prediction and analysis. The predicted val-
ues are used as the basic input for the reinforcement learning decision module. Then, a

https://pinnaclepubs.com/index.php/EJBEM

European Journal of Business, Economics & Management https://pinnaclepubs.com/index.php/EJBEM

Vol. 1 No. 3(2025) 107

graph partitioning mechanism is applied to achieve multi task concurrent scheduling, and
an on-demand resource feedback mechanism is used to optimize resource allocation in
real time, thereby improving the scheduling performance of the cloud computing plat-
form.

4.1. Predicting Using Historical and Real-Time Data
In the cloud computing platform, the scheduler will arrange job orders, resource al-

location, and priority reset according to the prediction results of computing resource load.
To improve prediction accuracy and response efficiency, it is necessary to establish a mul-
tidimensional feature structure that integrates historical and real-time data and apply it
as time-series data in the simulation process of subsequent models. The core is the collec-
tion and processing of data, using advanced data modeling to perform forward inference
on the workload of the job [5].

The data sources can be divided into two categories: one is historical static databases,
including information such as task execution time, average task time, and task types; The
second is the real-time data collected by monitoring devices, such as node resources, wait-
ing queue length, input/output rate, network traffic, and other information. The above
data all have temporal and diverse characteristics, and require unified encoding and
standardization processing to form a learnable structure.

After standardizing and normalizing the above data, a predictive input matrix can
be constructed:

𝑋𝑋𝑡𝑡 = [𝑥𝑥𝑡𝑡
(1), 𝑥𝑥𝑡𝑡

(2), . . . , 𝑥𝑥𝑡𝑡
(𝑛𝑛)] ∈ ℝ𝑛𝑛 (1)

Among them, xt
(i) represents the value of the i-th feature at time t, and n is the fea-

ture dimension. Within the scheduling period Δt, a time series input {Xt−Δt, . . . , Xt} is
formed as the sliding window for the prediction model. This feature vector not only con-
tains single point indicator values, but can also incorporate derived statistical measures
(such as standard deviation, maximum value, offset ratio, etc.) to enhance the model's
volatility perception ability.

4.2. Using Deep Learning for Complex Pattern Learning
The task load in cloud computing platforms usually exhibits severe randomness,

high disturbance, and cross period dependencies, which are the strengths of time models
in deep learning. The most common ones are RNN models with gate mechanisms (LSTM
and GRU), which capture hidden state changes in the time dimension and perform dy-
namic state control.

For example, LSTM consists of an input gate, a forget gate, and an output gate, each
with the task of saving current state information, forgetting historical states, and output-
ting transformation mapping content. These tasks can dynamically remember resource
usage and state discrimination in the scheduling system. The update of model status can
be represented as:

ℎ𝑡𝑡 = tanh(𝑊𝑊ℎ ⋅ [𝑥𝑥𝑡𝑡 , ℎ𝑡𝑡−1] + 𝑏𝑏) (2)
Among them, xt ∈ ℝn represents the input vector at the current time, which in-

cludes multidimensional resource indicators such as CPU, memory, disk IO, etc; ht−1 is
the hidden state of the previous time step; Wh and b are network weights and biases. By
learning from the sequence of {xt−k, . . . , xt}, the model can output a predicted value for
xt+1, which is the future resource state.

During the training phase, historical data is used for supervised learning of future
conditions to reduce prediction errors; After training, it is used as a prediction service
module, and the scheduler calls its results as important inputs for scheduling scores to
assist in resource priority decision-making, task sorting, and node allocation. It greatly

https://pinnaclepubs.com/index.php/EJBEM

European Journal of Business, Economics & Management https://pinnaclepubs.com/index.php/EJBEM

Vol. 1 No. 3(2025) 108

enhances the sensitivity of scheduling and enables the scheduling system to better under-
stand resource trends, providing sufficient data support for optimizing scheduling strat-
egies in the next step.

4.3. Adopting an On-demand Resource Allocation Mechanism
The core of the on-demand resource allocation mechanism lies in flexibly configuring

resources based on the real-time status of task execution, effectively solving the problem
of resource waste caused by the traditional fixed allocation mode of "allocation locking".
This mechanism relies on runtime resource monitoring and feedback mechanisms to con-
tinuously track resource consumption during task execution, adjust allocation limits in
real-time, or initiate resource recycling and scaling operations.

From a technical implementation perspective, the scheduling framework needs to
integrate resource usage awareness components, use container monitoring systems (such
as Metrics Server) to obtain dynamic usage of CPU, storage space, and input/output de-
vices, and configure policy triggering conditions. When the resource utilization rate of a
task is detected to be lower than the preset value during a specific period of time, the
system will automatically execute a resource reduction plan; When the resource usage
continues to approach its peak, the resource expansion process is initiated. In the Kuber-
netes platform, such operations can be completed through horizontal or vertical auto scal-
ing function modules. Resource allocation decisions are often constructed based on the
following formula:

𝑟𝑟target = 𝛼𝛼 ⋅ 𝑟𝑟peak + (1 − 𝛼𝛼) ⋅ 𝑟𝑟avg (3)

Among them, rpeak represents the peak utilization rate within the observation win-
dow, ravg represents the average value, and α is the weight parameter. This function bal-
ances extreme state and steady-state demands, generating a new resource target configu-
ration rtarget for dynamically updating the operational specifications of Pods or virtual
machines.

This mechanism needs to rely on the resource estimation mechanism in the scheduler
to implement, which means that after dynamic changes occur, the scheduling decision
needs to be restarted to avoid scheduling failure or resource competition. This mechanism
can more effectively release the resources of some nodes to high priority tasks, in order to
improve the resource utilization level of the entire system.

4.4. Adopting a Divide and Conquer Approach to Optimize the Calculation Process
With the expansion of cloud computing platforms, schedulers have to deal with re-

source allocation issues between thousands of tasks and hundreds of nodes during each
iteration. The scheduling process is a multi-objective and multi constraint combinatorial
optimization problem, which can lead to exponential growth in its search space, directly
causing computational bottlenecks. To improve the efficiency of scheduling response, the
"divide and conquer" strategy is introduced, which divides scheduling into multiple in-
dependent sub problems to be solved simultaneously.

This scheme adopts a weighted undirected graph structure G (V, E) for scheduling
scenario modeling, where the vertex set V corresponds to the task to be scheduled or avail-
able resources, and the edge set E represents the constraint relationship between tasks or
between tasks and resources. The weighted values of each edge in the graph represent the
strictness or execution cost of scheduling constraints. Using graph partitioning mecha-
nisms (such as METIS) to decompose the original graph G into multiple subgraphs with
lower coupling, enabling independent scheduling optimization within each subgraph and
effectively reducing the computational burden of the global scheduler.

The objective function for graph partitioning is as follows:
min∑ 𝑤𝑤𝑢𝑢𝑢𝑢(𝑢𝑢,𝑣𝑣)∈𝐶𝐶 s. t. |𝑉𝑉𝑖𝑖| ≈ |𝑉𝑉𝑗𝑗|,∀𝑖𝑖, 𝑗𝑗 (4)

https://pinnaclepubs.com/index.php/EJBEM

European Journal of Business, Economics & Management https://pinnaclepubs.com/index.php/EJBEM

Vol. 1 No. 3(2025) 109

Among them, C⊂E is the set of edges spanning subgraphs, wuv represents edge
weights, and the constraint conditions need to ensure that each subgraph is of similar size
to prevent load shifting. The partitioned data is used to establish a sub scheduler, which
runs in a distributed or parallel structure to improve the overall scheduling throughput.

Each sub scheduler only needs to be responsible for scheduling the subgraph tasks
assigned to it, and heuristic methods (such as minimum load priority) can be used to effi-
ciently perform local optimal scheduling. The scheduling coordinator will fuse the di-
vided scheduling results, and in case of resource conflicts or node overlaps, priority prin-
ciples or re-matching methods can be chosen.

5. Case Study on Cloud Computing Resource Scheduling Based on Big Data and Ma-
chine Learning

In order to verify whether the scheduling optimization scheme proposed in this arti-
cle is applicable to real-world scenarios, an experimental platform was built on the Google
Cluster Trace database, which integrates LSTM based resource load prediction, reinforce-
ment learning driven resource allocation, and a graph partitioning algorithm-based
scheduling optimization mechanism to evaluate the performance of the entire system.

A set of experimental methods was designed as follows: training an LSTM model
with multivariate time series data to obtain estimated CPU and memory usage for a cer-
tain period of time in the future; Combine the estimated results with the status of the task
queue to form a scheduling state vector, which serves as input for the reinforcement learn-
ing model to generate corresponding resource allocation decisions; The task node pairing
problem is represented graphically, and solved by decomposing it into relatively inde-
pendent subgraphs through graph division to reduce the computational burden of cen-
tralized scheduling process (Table 1).

Table 1. Comparison of Key Performance Indicators of the System before and after Optimization
Strategy Deployment.

Index Unoptimized Strategy Optimize Scheduling Strategy
Average Resource Utilization

Rate
64.2% 85.7% (↑21.5%)

Average Waiting Time for
Tasks (seconds)

3.82 3.12(↓18.3%)

SLA Default Rate 7.6% 6.6% (↓13.0%)
This collaborative mechanism greatly improves the system's adaptability and real-

time response capability, further verifying the practical feasibility of the strategy proposed
in this paper.

6. Conclusion
In order to effectively solve the key technical problems of resource scheduling in

cloud computing platforms, this paper proposes an intelligent scheduling structure that
integrates multidimensional data modeling, deep prediction, and graph partitioning op-
timization. The LSTM model is used for short-term resource prediction, reinforcement
learning is used for dynamic tuning strategies, and the graph partitioning mechanism is
used to further improve task parallel processing capabilities. Through testing on actual
datasets, the superiority and effectiveness of the proposed method have been demon-
strated. The proposed strategy has excellent scalability and real-time performance,
providing effective support for intelligent scheduling practices in complex cloud environ-
ments.

https://pinnaclepubs.com/index.php/EJBEM

European Journal of Business, Economics & Management https://pinnaclepubs.com/index.php/EJBEM

Vol. 1 No. 3(2025) 110

References
1. Y. Li, Z. Li, F. Zhang, and R. Qu, "Research on heterogeneous computing resource scheduling mechanism for power information

system operation," In Second International Conference on Physics, Photonics, and Optical Engineering (ICPPOE 2023), March, 2024,
pp. 245-252.

2. S. Gheisari, and H. ShokrZadeh, "LATA: learning automata-based task assignment on heterogeneous cloud computing plat-
form," The Journal of Supercomputing, vol. 80, no. 16, pp. 24106-24137, 2024, doi: 10.1007/s11227-024-06292-6.

3. X. Tang, F. Liu, B. Wang, D. Xu, J. Jiang, Q. Wu, and C. P. Chen, "Workflow scheduling based on asynchronous advantage actor-
critic algorithm in multi-cloud environment," Expert Systems with Applications, vol. 258, p. 125245, 2024, doi:
10.1016/j.eswa.2024.125245.

4. H. Zhou, "A novel approach to cloud resource management: hybrid machine learning and task scheduling," Journal of Grid
Computing, vol. 21, no. 4, p. 68, 2023, doi: 10.1007/s10723-023-09702-w.

5. Y. Xing, "Work scheduling in cloud network based on deep Q-LSTM models for efficient resource utilization," Journal of Grid
Computing, vol. 22, no. 1, p. 36, 2024, doi: 10.1007/s10723-024-09746-6.

Disclaimer/Publisher’s Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s)
and contributor(s) and do not necessarily reflect the views of PAP and/or the editor(s). PAP and/or the editor(s) disclaim any respon-
sibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in
the content.

https://pinnaclepubs.com/index.php/EJBEM
https://doi.org/10.1007/s11227-024-06292-6
https://doi.org/10.1016/j.eswa.2024.125245
https://doi.org/10.1007/s10723-023-09702-w
https://doi.org/10.1007/s10723-024-09746-6

	1. Introduction
	2. Overview of Cloud Computing Resource Scheduling
	3. Resource Scheduling Issues in Cloud Computing Platforms
	3.1. Mismatch between Reserved Resources and Actual Needs
	3.2. Inaccurate Load Forecasting
	3.3. Unequal Allocation of Computing and Storage Resources
	3.4. High Computational Complexity

	4. Optimization Strategies for Resource Scheduling in Cloud Computing Platforms
	4.1. Predicting Using Historical and Real-Time Data
	4.2. Using Deep Learning for Complex Pattern Learning
	4.3. Adopting an On-demand Resource Allocation Mechanism
	4.4. Adopting a Divide and Conquer Approach to Optimize the Calculation Process

	5. Case Study on Cloud Computing Resource Scheduling Based on Big Data and Machine Learning
	6. Conclusion
	References

