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Abstract: Due to the wide application of high-frequency trading in the crypto asset market, and 
because volatility factors can accurately reflect the characteristics of price changes, they have long 
attracted attention from both research and practice. However, a single volatility factor is often dis-
turbed by market noise and has a small adjustment range. In this paper, multiple high-frequency 
volatility factors are constructed, such as historical volatility, realized volatility, and jump volatility, 
and three fusion techniques are designed, namely linear weighting, statistical dimension reduction, 
and machine learning fusion methods. Through empirical tests using the transit-by-transaction data 
of BTC and ETH, the results show that the comprehensive signal strategy outperforms the single-
factor strategy in terms of prediction effect, stability of positive returns, and risk control, demon-
strating obvious trading advantages. 
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1. Introduction 
The crypto asset market, characterized by intense volatility, continuous trading, and 

decentralization, has become one of the important scenarios for the application and prac-
tice of high-frequency trading strategies. However, in a high-frequency environment, tra-
ditional factor models have problems such as rapid signal attenuation and insufficient 
real-time performance. Although the volatility factor has significant advantages in risk 
measurement, a single volatility measure cannot comprehensively consider the multi-di-
mensional dynamic characteristics of the market. For this purpose, this paper introduces 
multiple volatility factor construction mechanisms and, on this basis, proposes a fusion 
strategy to optimize signal stability. Through empirical research, the performance of fac-
tors under different fusion modes can be evaluated to prove their practicability and ro-
bustness in actual transactions. 

2. The Influence of the Characteristics of the Crypto Asset Market on Factor Modeling 
The crypto asset market is characterized by high volatility, asymmetric liquidity, and 

rapid changes in trading depth, and it is not fully applicable to traditional financial factor 
models. This is because the price of the crypto market fluctuates sharply and often expe-
riences sudden jumps and drops, requiring the factor to have a high real-time response 
capability; The forms of transaction orders are variable and change over time, which can 
have adverse effects on factors based on static statistics [1]. 24-hour continuous trading 
and information disparities across different platforms increase the timeliness require-
ments of trading factors in both time and dimension. Therefore, in order to establish a 
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volatility factor applicable to high-frequency environments, it is necessary to have dy-
namic adjustment of the time window, the ability to depict jumping fluctuations, and cou-
pling with the market microstructure. 

3. Data Sources and Construction of Volatility Factors 
3.1. Data Description 

This research is based on the high-frequency data of the Binance exchange and selects 
two major cryptocurrency trading pairs, BTC/USDT and ETH/USDT, as the research ob-
jects. The data covers transaction-by-transaction and order snapshots, with a sampling 
frequency of 1 second and a time span from June 2024 to May 2025. It encompasses various 
typical market conditions and is highly representative. Transit-by-transaction data in-
cludes the transaction price, quantity and timestamp per second, which is used to generate 
high-frequency return sequences [2]. The order data records the quotations for buying and 
selling and the number of pending orders, which is used to depict the changes in market 
liquidity and microstructure. In the data preprocessing stage, unify the time granularity 
and construct equally spaced data sequences, eliminate outliers and missing points, and 
normalize the key variables simultaneously. To enhance the explanatory power of the fac-
tors and to better identify transaction directions, this study captures the characteristics of 
active transaction behaviors and order flows. Ultimately, a standardized high-frequency 
data system including multi-dimensional features such as price, transaction volume and 
depth is formed, laying a data foundation for the subsequent construction of volatility 
factors and signal modeling [3]. 

3.2. Volatility Factor Setting 
This paper constructs multiple factors depicting the characteristics of market fluctu-

ations based on high-frequency data, covering price fluctuations, return structure, and 
order flow dynamics. The historical volatility factor calculates the fluctuation level of re-
cent returns through a sliding window to reflect market risks. The realized volatility 
measures the actual price fluctuations in the short term and is suitable for capturing in-
stantaneous fluctuations. Jump volatility is used to identify sharp price changes and de-
pict the impact of unexpected events on market dynamics. Furthermore, the order flow 
factor is introduced to reveal the changes in trading behavior through the differences in 
buying and selling volumes, reflecting liquidity pressure. All factors are constructed at 
one-second intervals and standardized to enhance the comparability among factors and 
the efficiency of subsequent signal fusion. These factors constitute the core basis of signal 
modeling in this paper (Figure 1). 

 
Figure 1. Framework Diagram of the Volatility Factor. 
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4. The Signal Fusion Method of Volatility Factor in High-Frequency Trading of 
Crypto Assets 
4.1. Linear Weighting and Information Weighting 

Linear weighting is the most fundamental method in signal fusion. It aggregates the 
standardized fluctuation factors using fixed weights to form a single composite signal. 
The most common method is equal-weight weighting, which assigns the same weight to 
all factors. This method is intuitive and efficient in execution. Information-based 
weighting is achieved by assigning differentiated weights to each factor through historical 
statistical indicators. Commonly used measurement indicators include the information 
coefficient (IC), signal direction accuracy rate, and prediction residual variance. These 
weights can be updated regularly to accurately reflect the historical performance of vari-
ous factors, thereby enhancing the stability and forward-looking nature of the signal. The 
linear weighting method does not involve any parameter training, has a simple structure, 
is easy to understand, and is suitable for high-frequency trading scenarios with high re-
quirements for effectiveness and controllability. Information weighting can further en-
hance the substantive role of factors and provide a comparable benchmark reference for 
the subsequent construction of more complex fusion models [4]. 

4.2. Statistical Dimension Reduction Model 
In high-frequency trading, multi-factor models have problems such as high dimen-

sionality, strong collinearity, and substantial redundant information. If they are not pro-
cessed, it may lead to phenomena such as information distortion and model overfitting. 
Therefore, in this paper, the statistical dimension reduction method is adopted to com-
press a large number of original volatility factors into a few comprehensive signals with 
higher information density. Among them, the commonly used method is Principal Com-
ponent Analysis (PCA). By retaining the maximum variance information, a smaller num-
ber of principal components are constructed, thereby eliminating redundant dimensions, 
merging highly correlated variables, and improving the stability and interpretability of 
the signal. Independent Component Analysis (ICA) is an effective statistical dimension 
reduction method, which identifies and extracts mutually independent signals from high-
dimensional and multi-source factors that are not normally distributed. ICA pays more 
attention to statistical independence compared with PCA, and thus can identify potential 
structural features related to extreme fluctuations. Even in the case of factor distribution 
bias or the presence of long-tail features, it still has a good extraction ability. The signal 
after dimensionality reduction significantly reduces noise interference while retaining the 
core information, enhancing the robustness and generalization ability of the model. 

4.3. Computer Learning Integration 
Machine learning methods provide effective support for the integration and extrac-

tion of factor signals in the crypto asset market with complex high-frequency fluctuations 
and significant nonlinear characteristics. This paper employs two models-the ensemble 
learning model XGBoost and the time series model LSTM. XGBoost iteratively builds mul-
tiple regression trees to simulate the nonlinear relationship between factors and future 
returns. It has the ability of automatic feature selection and anti-multicollinearity, and is 
suitable for fusion tasks with high-dimensional inputs. Its input is a standardized set of 
multiple volatility factors, and the output is a signal of future short-term returns or price 
directions. LSTM is used to track the time series structure of factors, uses a gating mecha-
nism to store valid historical information, and is capable of identifying trend changes as 
well as short-term impacts [5]. 
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5. Empirical Research and Result Analysis 
5.1. Experimental Setup 

To enhance the effectiveness of the volatility factor fusion method in high-frequency 
trading of crypto assets, this paper constructs an experimental framework covering data 
processing, sample division, signal generation and strategy execution. The research object 
of this paper is BTC/USDT and ETH/USDT of Binance Exchange. The data frequency is 1 
second, and the observation period is from June 2024 to May 2025. The samples are di-
vided into a training set, a validation set, and a test set. After generating standardized 
signals, each model generates long and short positions, and the position size is determined 
by the signal intensity. With 10,000 USDT as the initial capital, a slippage equivalent to 
one second delay is assumed, and the bilateral transaction fee is 0.05%. The transaction 
proceeds at one-second intervals, and the net value and trading behavior are recorded in 
real time. 

5.2. Evaluation Indicators 
This paper makes judgments from four dimensions: return capacity, risk control, sta-

bility and signal prediction quality respectively, and verifies different volatility factor fu-
sion strategies. All indicators are calculated based on the net asset value time series gen-
erated by strategy backtesting and signal outputs as follows: 

The Annualized Return measures the overall profitability of the strategy and is de-
fined as: 

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �𝑉𝑉𝑇𝑇
𝑉𝑉0
�
252×24×60×60

𝑇𝑇 − 1          (1) 

In the actual measurement, the XGBoost fusion strategy achieved an annualized rate 
of return 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≈ 63.15% that was superior to that of PCA fusion at 45.97% and linearly 
weighted at 38.24%. 

Maximum Drawdown measures the most severe loss that a strategy may face in his-
tory and is defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡∈[0,𝑇𝑇]

�𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠≤𝑡𝑡 𝑉𝑉𝑠𝑠−𝑉𝑉𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠≤𝑡𝑡 𝑉𝑉𝑠𝑠

�        (2) 

The maximum drawdown of the XGBoost model was 8.2%, significantly smaller than 
12.9% of the linear weighted strategy, indicating that it has stronger risk resilience. 

In order to measure the risk-adjusted return performance of the strategy, this paper 
calculates the Sharpe Ratio and the Calmar Ratio. The Sharpe ratio is defined as: 

𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐸𝐸�𝑅𝑅𝑡𝑡−𝑅𝑅𝑓𝑓�

𝜎𝜎(𝑅𝑅𝑡𝑡)
            (3) 

Among them, 𝑅𝑅𝑡𝑡 is the daily rate of return of the strategy, 𝑅𝑅𝑓𝑓 is the risk-free interest 
rate (set as 0 in this paper), and 𝜎𝜎(𝑅𝑅𝑡𝑡) is the standard deviation of the rate of return. The 
Calmar ratio is the ratio of annualized return to maximum drawdown: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

           (4) 

The Sharpe ratio of the XGBoost strategy is approximately 2.41, and the Calmar ratio 
reaches 7.70, both of which are higher than those of PCA fusion (1.75, 4.38) and linear 
weighting (1.43, 2.96), indicating that it has a better risk-return profile. 

In terms of signal prediction, this paper introduces the information ratio to measure 
the correlation degree between the signal and future returns, which is defined as: 

𝐼𝐼𝐼𝐼 = 𝐸𝐸[𝑟𝑟𝑡𝑡⋅𝑠𝑠𝑡𝑡]
𝜎𝜎(𝑟𝑟𝑡𝑡⋅𝑠𝑠𝑡𝑡)

             (5) 

The higher the information ratio is, the more consistent the signal's direction is with 
the actual market returns. In the empirical study, the IR of the XGBoost model is 0.79, 
which is higher than that of PCA (0.58) and linear weighting (0.42). 

In addition, the Accuracy of signal direction prediction is also calculated, namely: 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1
𝑇𝑇
∑ 𝐼𝐼�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑟𝑟𝑡𝑡)�𝑇𝑇
𝑡𝑡=1        (6) 

The direction prediction accuracy rate of the XGBoost model reaches 60.5%, signifi-
cantly higher than that of other models, further proving that its fused signal has good 
predictive power and tradability. 

5.3. Comparative Analysis of Signal Prediction Capabilities 
This paper mainly examines the predictive ability of different volatility factors and 

their fusion signals for future market returns. Specifically, historical volatility (HV), real-
ized volatility (RV), and jump volatility (JV) are evaluated as single factors respectively; 
Meanwhile, the statistical fusion signal (PCA) obtained through Principal Component 
analysis (PCA) and the machine learning fusion signal constructed based on XGBoost are 
taken as the test pairs. The direction of the payoff in the next five seconds is used as the 
criterion for judging the validity of the signal, and then the Pearson correlation coefficient 
between the information coefficient and the future payoff is calculated. The stability of the 
signal is measured by the standard deviation (Table 1). 

Table 1. Comparison of the Predictive Capabilities of Different Volatility Signals and Fusion Models 
under the BTC/USDT Trading Pair. 

Signal type Direction accuracy rate (%) information coefficient (IC) IC standard deviation 
Historical volatility HV 51.2 0.021 0.035 
Achieve volatility RV 52.9 0.034 0.028 

Jump Volatility JV 53.1 0.037 0.030 
Statistical Fusion (PCA) 56.8 0.058 0.021 
ML Fusion (XGBoost) 60.5 0.079 0.018 

Studies show that the predictive ability of a single volatility factor is relatively weak, 
the direction accuracy rate is basically equivalent to the random guessing level (i.e., 
around 50%), the information coefficient fluctuates greatly, and it is easily affected by the 
microstructure of the market. Compared with historical volatility, realized and jump vol-
atility factors, which incorporate high-frequency structural information, show slightly im-
proved predictive performance, indicating that the introduction of high-frequency infor-
mation has certain value. The statistical fusion method (PCA) can be utilized to further 
enhance the predictive performance. The accuracy rate is increased to 56.8%, the infor-
mation coefficient is significantly improved, and the signal performance is more stable. 
The XGBoost fusion signal achieved the best performance, with an accuracy rate of over 
60% and an information coefficient of 0.079, indicating that it has obvious advantages in 
identifying complex nonlinear relationships among factors. 

5.4. Comparative Analysis of Fusion Strategies 
After completing the evaluation of the signal prediction ability in the previous sec-

tion, this paper further constructs multiple high-frequency trading strategies based on the 
fused signals and builds a backtesting system that closely simulates real-world trading 
conditions to measure the performance of the strategies in terms of overall returns, risk 
control and stability. Specific strategies include linear weighting strategies (such as equal-
weight and information-weighted), statistical dimensionality reduction strategies (such as 
PCA), and machine learning strategies (such as XGBoost). All strategies generate trading 
signals at a frequency of seconds and allocate funds proportionally based on the signal 
strength. The backtest settings include a bilateral transaction fee rate of 0.05%, a simulated 
slippage equivalent to a 1-second execution delay, a trading subject of BTC/USDT, and a 
test period from March 2025 to May 2025 (Table 2).  
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Table 2. Comparison of Backtest Performance of Different Fusion Strategies under the BTC/USDT 
Trading Pair. 

Strategy type 
Annualized rate 

of return (%) 
Maximum 

drawdown (%) 
Sharpe 

ratio 
Karma 
ratio 

Average daily 
turnover rate (%) 

Linear weighting 
(equal-weight) 

38.2 12.9 1.43 2.96 28.5 

Information 
weighting 

45.7 11.3 1.74 4.05 26.1 

PCA fusion 52.6 10.5 1.98 5.01 23.7 
XGBoost fusion 63.1 8.2 2.41 7.70 21.9 

Studies show that the nonlinear fusion strategy is generally superior to the traditional 
linear weighting method in terms of return and risk control. The XGBoost strategy per-
formed the best, with an annualized return rate of 63.1% and a maximum drawdown of 
only 8.2%. It ranked first in indicators such as the Sharpe and Calmar ratios, demonstrat-
ing excellent stability and predictive power. The PCA strategy mitigates factor redun-
dancy by applying dimensionality reduction techniques. The Sharpe ratio is close to 2, 
and the maximum drawdown is controlled within 11%, demonstrating strong robustness. 
In contrast, the linear weighting method is vulnerable to market noise interference and 
exhibits unstable performance. In addition, the XGBoost strategy has a lower average 
daily turnover rate and higher execution efficiency. 

5.5. Sensitivity and Stability Tests 
To further verify the effectiveness and stability of the volatility factor fusion method, 

this paper conducts scalability tests from two dimensions. On the one hand, it examines 
the performance of the strategy under various market conditions, including normal vola-
tility, trending markets, and high-turbulence periods. On the other hand, an analysis is 
conducted around the impact of changes in key parameters on the strategy results, such 
as changes in settings such as slippage rate, transaction fees, and prediction window 
length. This section mainly compares the performance of the XGBoost and PCA fusion 
strategies, under the above conditions, and evaluates them in terms of revenue perfor-
mance, robustness, and execution efficiency (Table 3). 

Table 3. Performance of Strategy Robustness under Different Market Conditions and Parameter 
Settings. 

Test scenario 
Annualized return 

rate of XGBoost 
Fusion (%) 

Maximum 
drawdown 

(%) 

Annualized rate 
of return of PCA 

fusion (%) 

Maximum 
drawdown 

(%) 
Regular Volatile Market 

(March 2025) 
58.6 8.9 46.1 10.7 

Obvious unilateral in-
crease (Early April 2021) 

65.3 7.4 51.2 9.5 

Sudden sharp market de-
cline (Late April 2021) 

60.1 9.6 43.7 12.2 

The slippage has been in-
creased to 0.15% 

55.4 10.2 40.6 13.1 

The handling fee is dou-
bled (0.1%) 

50.7 9.8 39.3 12.5 

The prediction window 
has been changed from 5 

seconds to 10 seconds 
66.8 8.5 48.4 10.2 
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The experimental results show that the XGBoost fusion strategy demonstrates the 
advantages of stable returns and low fluctuations in various market environments, indi-
cating strong adaptability and robustness. Even under sharp market fluctuations or ad-
verse trends, the XGBoost strategy maintains an annualized return above 60%, reflecting 
its strong resilience, reflecting its strong ability to withstand pressure. In contrast, the 
overall performance of the PCA fusion method declines when facing sudden price 
changes or rising transaction costs, further highlighting the advantages of machine learn-
ing methods in capturing the structural characteristics of the market. Although both strat-
egies are affected by external disturbances, XGBoost is less impacted, indicating that it is 
more stable in the model construction and execution stages. When the prediction window 
was extended from 5 to 10 seconds, the XGBoost strategy achieved higher returns, show-
ing strong compatibility with lagging features, while the PCA strategy exhibited reduced 
adaptability under this condition. 

6. Conclusion 
This study focuses on high-frequency trading of crypto assets, constructs a multi-

factor system incorporating historical, realized, jump, and order book-based volatility 
measures, and proposes three types of signal fusion methods: linear weighting, statistical 
dimensionality reduction and machine learning. Empirical results show that the fusion 
strategy outperforms the single-factor model in terms of revenue, drawdown control and 
signal stability, with XGBoost performing the best. Further sensitivity tests verified the 
adaptability and robustness of the model. The findings demonstrate that integrating 
multi-source volatility information significantly enhances predictive accuracy and execu-
tion efficiency, providing methodological support for high-frequency quantitative trading 
strategies. 
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