
European Journal of AI,  
Computing & Informatics 
 
Vol. 1 No.1 2025 

 
 

Vol. 1 No. 1 (2025) 1  

Article  

High Availability Architecture Design and Optimization Prac-
tice of Cloud Computing Platform 
Yifan Yang 1,* 

1 Viterbi school of Engineering, University of Southern California, Los Angeles, CA, 90089, USA 
* Correspondence: Yifan Yang, Viterbi school of Engineering, University of Southern California, Los Angeles, 

CA, 90089, USA 
 

Abstract: In order to ensure service availability and continuous operation of cloud computing plat-
form services, it is necessary to study and optimize the high availability architecture of cloud com-
puting platform. Based on the development history of the high availability architecture of cloud 
computing platforms, this paper analyzes and studies the basic principles of high availability design. 
It first discusses how to apply various redundancy strategies to solve hardware redundancy prob-
lems, then focuses on addressing network redundancy issues, and finally provides corresponding 
solutions. It also provides how to improve the troubleshooting ability and rapid recovery ability of 
the system by adopting containerized architecture and big data monitoring. 

Keywords: cloud computing platform; high availability architecture; fault tolerance mechanism; 
fault recovery; big data monitoring 
 

1. Introduction 
With the rapid development of cloud computing technology, enterprises have in-

creasing requirements for its availability and scalability, aiming not only for the system's 
quick recovery from failures but also for the continuous and stable operation of business 
services. This paper describes the foundation and characteristics of HADR in cloud com-
puting environment and it outlines the high availability structure and highlights the key 
significance and challenges of HADR design. After that, the key elements and optimiza-
tion methods of building HADR with excellent performance and high reliability are elab-
orated with a practical case study, which provides feasible theoretical basis and reference 
method for the construction of cloud computing platform HADR. 

2. Theoretical Basis 
2.1. Definition and Development of Cloud Computing Platform 

Cloud computing platform is a network-based computing platform that uses com-
puting, storage and network systems and platform services on the Internet to enable cus-
tomers to use resources according to needs and charge according to actual usage, greatly 
reducing IT costs. Service types can be classified into IaaS, PaaS, and SaaS. IaaS is the basic 
computing resource, PaaS is used to build and publish applications, and SaaS delivers 
applications directly to users to run. The development process of the cloud platform has 
evolved from simple virtualization technology to complex distributed computing systems 
and now has a wide range of applications in big data, AI, and other fields [1].  

Received: 10 April 2025 

Revised: 15 April 2025 

Accepted: 27 April 2025 

Published: 29 April 2025 

 

Copyright: © 2025 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 

 
Open Access 



European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI 
 

Vol. 1 No. 1 (2025) 2  

2.2. Basic Concepts of High Availability Architecture 
HA architecture refers to the use of specific technologies and methods to ensure that 

the system can continue to provide services when problems occur and minimize service 
interruption time. Its purpose is to avoid a single point of failure (SPOF), improve system 
reliability and fault tolerance, and ensure business continuity. 

In general, high availability network architecture is mainly realized through the con-
cept of redundancy design, backup mechanisms, and self-healing capabilities. Redun-
dancy prevents a single point of failure by backing up hardware, data, or services. For 
example, a group of servers are distributed in different areas, so that when one server or 
data center goes down, its requests will be replaced by other servers or data centers. In 
the backup mechanism, the system actively detects faults and switches to the fault-free 
node or standby device to maintain service continuity. An automatic recovery policy can 
take this approach and restore service availability by repairing or restarting the faulty 
component in a timely manner with its own recovery function after an error occurs [2]. 

3. High Availability Architecture Design 
3.1. Overall Framework for High Availability Architecture Design of Cloud Computing Platform 

The high availability architecture of the cloud platform is designed to ensure that the 
platform can continue providing normal external services even when abnormal condi-
tions such as hardware failures, software errors, or network disruptions occur (Figure 1 
[3]. 

 
Figure 1. Flowchart of the Overall Framework for High Availability Architecture Design. 

Design hardware redundancy and network redundancy: Hardware redundancy and 
network link redundancy are designed to avoid the single point of failure in the system. 
In case of device or link failure, services can be processed continuously. 

Load balancing and service redundancy: At the service layer, all requests are dynam-
ically scheduled through multiple service instances by the load balancer. The load bal-
ancer is responsible for health monitoring, and if an unhealthy instance occurs, it dynam-
ically directs traffic to the healthy instance to ensure service availability. 

Data redundancy and data consistency maintenance: Distributed storage and mas-
ter/slave replication are used to implement data redundancy, ensuring that when a stor-
age node fails, other nodes can still access the stored data.  

Automatic fault detection and recovery mechanism: The automatic fault detection 
and recovery module of the system dynamically monitors the node status. When the sys-
tem detects a fault, it automatically recovers the fault [4].  

  

https://pinnaclepubs.com/index.php/EJACI


European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI 
 

Vol. 1 No. 1 (2025) 3  

3.2. Implementation of Multi-Layer Redundancy and Fault Tolerance Mechanism  
In a high availability system to ensure the normal operation of services, its redun-

dancy and fault-tolerant design are important guarantee mechanisms. This redundancy 
and fault tolerance can prevent single points of failure (SPOF) in the system. In case of an 
interruption, the system can seamlessly switch to a redundant component, ensuring un-
interrupted service delivery. The following describes the multilevel redundancy and 
fault-tolerant system architecture in detail. 

Redundant design: 
1) Hardware redundancy: Load balancing can be implemented, that is, load bal-

ancing can be performed among multiple servers to prevent a server failure 
from causing a system crash. The formula is as follows: 

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = (1 − 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝑛𝑛           (1) 
Where 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 indicates the probability that at least one device fails, 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 indicates 

the probability that a single device does not fail, and 𝑛𝑛 indicates the number of devices. 
With the increase of the number of redundant devices, the probability of failure decreases 
significantly. 

2) Network redundancy: Since we connect different nodes with multiple network 
paths, when there is a problem in some network paths, we can also use other 
network paths to transmit data. 

3) Data redundancy: Technical measures such as data backup number and RAID 
(redundant array of independent disks) can ensure that data can still be used 
normally even if a storage device fails. For example, the active/standby replica-
tion function in a distributed database can quickly transfer the failure of the ac-
tive node to the standby node, as shown in formula (2). 

𝑅𝑅 =
∑ (𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
𝑛𝑛
𝑟𝑟=1

𝑛𝑛
            (2) 

Here, 𝑅𝑅 represents the data recovery time and 𝑇𝑇𝑟𝑟𝑆𝑆𝑟𝑟𝑓𝑓𝑓𝑓𝑆𝑆𝑓𝑓𝑓𝑓 is the data recovery time of 
the 𝑖𝑖-th replica. 

3.3. Load Balancing and Fault Recovery Design 
HA is a load balancing and fault recovery technology that distributes traffic across 

multiple servers to avoid overloading a single server. With fault recovery, you can ensure 
that problems can be repaired in the first time. The main load balancing and fault recovery 
designs are described below. 

Load balancing: 
1) Application layer load balancing: In practical applications, we hand the re-

quested load to the load balancer. The load balancer will implement intelligent 
scheduling based on the actual load and response time of the server. For exam-
ple, we can use a weighted polling algorithm for load balancing and allocate 
requests based on the capabilities of individual servers. 

𝐿𝐿 = 1
𝑁𝑁
∑ 𝐿𝐿𝑆𝑆𝑆𝑆𝑟𝑟𝑠𝑠𝑆𝑆𝑟𝑟 𝑓𝑓
𝑁𝑁
𝑓𝑓=1            (3) 

Where 𝐿𝐿server i indicates the load of server 𝑖𝑖 and 𝑁𝑁 is the number of servers. 
2) Global load balancing: Applications are deployed across different data centers. 

Global load balancing is an intelligent routing policy based on factors such as 
data center location and network delay. 

Fault recovery design: 
Automatic fault detection and failover: The monitor can detect each service node and 

switch to another service node when the service node is not working, thus ensuring con-
tinuous service provision. The fault recovery formula is as follows: 

𝑅𝑅𝑡𝑡𝑓𝑓𝑡𝑡𝑆𝑆 = 𝑇𝑇𝑑𝑑𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑆𝑆𝑟𝑟          (4) 
Where 𝑅𝑅𝑡𝑡𝑓𝑓𝑡𝑡𝑆𝑆 represents the total process from the generation of the problem to the 

end of recovery, 𝑇𝑇𝑑𝑑𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 represents the time required for the problem discovery process, 
and 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑆𝑆𝑟𝑟 represents the time required for the problem transfer. 

https://pinnaclepubs.com/index.php/EJACI


European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI 
 

Vol. 1 No. 1 (2025) 4  

3.4. Data Backup and Disaster Recovery Design 
When a disaster occurs, you can use data backup and disaster recovery policies to 

quickly recover data and ensure continuous service running. 
Data backup strategy: 
1) Incremental backup and full back up: A full backup copies all data at once, while 

an incremental backup only saves data that has changed since the last backup. 
Combining the two methods can reduce the backup duration and capacity without 

compromising data security. 
2) Remote backup: Remote data backup is performed to ensure data recovery 

when disasters occur in the future. 
The formula is as follows: 
𝐷𝐷𝑟𝑟𝑆𝑆𝑆𝑆𝑡𝑡𝑓𝑓𝑟𝑟𝑆𝑆 = 𝑇𝑇𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟+𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟

2
           (5) 

𝐷𝐷𝑟𝑟𝑆𝑆𝑆𝑆𝑡𝑡𝑓𝑓𝑟𝑟𝑆𝑆 is the data recovery time, 𝑇𝑇𝑓𝑓𝑓𝑓𝑆𝑆𝑓𝑓𝑓𝑓 is the local recovery time, and 𝑇𝑇𝑟𝑟𝑆𝑆𝑡𝑡𝑓𝑓𝑡𝑡𝑆𝑆 is 
the remote recovery time. 

Disaster recovery design: 
1) Multi-regional disaster recovery architecture: Cloud platforms often adopt the 

multi-regional disaster recovery mode, that is, they operate through data centers 
distributed in different geographic areas. For example, if a service in one region 
fails, the service in another region is switched to the disaster recovery regional 
service. 

2) Automatic recovery process: When a disaster recovery event occurs, the system 
automatically detects the fault and performs actions, such as data recovery, ap-
plication reinstallation, and traffic switchover. 

𝑇𝑇𝑟𝑟𝑆𝑆𝑆𝑆𝑓𝑓𝑠𝑠𝑆𝑆𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑑𝑑𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 + 𝑇𝑇𝑟𝑟𝑆𝑆𝑆𝑆𝑡𝑡𝑓𝑓𝑟𝑟𝑆𝑆 + 𝑇𝑇𝑆𝑆𝑠𝑠𝑓𝑓𝑡𝑡𝑆𝑆ℎ        (6) 
𝑇𝑇𝑟𝑟𝑆𝑆𝑆𝑆𝑓𝑓𝑠𝑠𝑆𝑆𝑟𝑟𝑟𝑟 is the time from fault occurrence to service recovery, 𝑇𝑇𝑑𝑑𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 is the time for 

fault detection, 𝑇𝑇𝑟𝑟𝑆𝑆𝑆𝑆𝑡𝑡𝑓𝑓𝑟𝑟𝑆𝑆 is the time for data recovery, and 𝑇𝑇𝑆𝑆𝑠𝑠𝑓𝑓𝑡𝑡𝑆𝑆ℎ is the time for service 
switchover. 

4. Key Difficulties in the High Availability Architecture  
4.1. Difficulties in Implementing Hardware Redundancy and Fault Tolerance 

Although implementing hardware redundancy and fault-tolerant hardware infra-
structure is one way, there are many problems in practice. The use of excess hardware 
means an increase in the total cost, especially when a large number of uses, additional 
hardware purchase and maintenance require a larger amount of capital expenditure. In 
addition, hardware redundancy relies on the cooperation between different components 
and the consistency of data. If one component fails, it may cause the entire system to fail 
[5].  

4.2. Multi-Layer Network Redundancy and Failover Problems  
Although it is necessary to consider the problems of multilevel network reuse and 

failover to build a highly reliable system, there are still many difficulties in the process of 
realizing this strategy. Effective redundant network design scheme is difficult to obtain, 
especially in the large-scale distributed system, how to reasonably design the lines and 
equipment use of redundant network, to prevent the problem of line overload or idle re-
dundant equipment. 

Network link faults of different nature, such as delay and packet loss, may degrade 
the quality of service, or routing protocols in distributed networks may be delayed. When 
a network fault occurs, the unavailable time of service quality will be increased. 

4.3. Conflict between Distributed Data Consistency and High Availability  
In the distributed architecture, the conflict over the consistency and reliability of in-

formation is contradictory. In the CAP theory, if the network is divided, the integrity and 

https://pinnaclepubs.com/index.php/EJACI


European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI 
 

Vol. 1 No. 1 (2025) 5  

availability of information cannot be provided, thus forcing a trade-off between con-
sistency and availability during system design. For example, in the design of the master-
slave structure, when the master machine fails, the backup machine starts to provide ser-
vices, which may lead to data loss or delay synchronization, and the data stored on each 
device is not in the same state. This happens frequently in distributed databases. In order 
to avoid consistency problems, many systems adopt the ultimate consistency strategy, 
that is, allow a brief inconsistency, and then make all the data consistent. However, this 
method can lead to serious conflicts and increase the difficulty of handling. 

4.4. Technical Challenges of Automated Fault Detection and Recovery  
Although the automatic fault diagnosis and repair strategy is based on the highly 

reliable basic structure system, it has many technical challenges. Due to the nature of 
large-scale distributed systems, fault phenomena in large-scale distributed systems are 
often reflected through subtle indicators such as minor performance degradation or tran-
sient error logs, which traditional monitoring tools may not promptly detect, resulting in 
delayed fault identification. In addition, the states of components in the system change 
quickly and complex, how to build an effective, timely and efficient fault detection 
method to locate the fault location is still a challenging technical problem. 

During data recovery, maintaining data synchronization across multiple service 
nodes presents a significant challenge, particularly in avoiding data loss and ensuring a 
smooth recovery process. When data is synchronized between multiple service nodes, 
how to avoid data loss and make the recovery process as smooth as possible is also a 
problem to be solved during the recovery process. 

5. Optimize the High Availability Architecture 
5.1. Containerized Architecture Improves Service Fault Tolerance  

Containerized architecture improves service trust and reliability through microker-
nel architecture. Compared to traditional virtual machine architectures, unlike traditional 
virtual machines, which each run a full operating system and can host multiple applica-
tions, containerized architectures share the same OS kernel, enabling multiple applica-
tions and services to run with significantly reduced overhead and improved resource ef-
ficiency. All services in this architecture are compressed into containers, making service 
startup, movement, and recovery faster (See Figure 2). 

 
Figure 2. Architecture Process of Containerization for Enhancing Service Fault Tolerance. 

The above flowchart illustrates how containerization can improve the robustness of 
a cloud computing service platform. Container technology subdivides services into indi-
vidual, tiny containers, each of which is a packaged application or service. Therefore, even 
if one container fails, the other containers will still work. 

First, the complex services are divided into numerous lightweight containers, each 
running independently to isolate faults and enhance stability, so that each service can 
work on its own. In this way, we can avoid the instability of a single application failure 
leading to an entire system deadlock. Second, with a container scheduler such as Kuber-
netes, the number of containers assigned to a service can be determined based on the 

https://pinnaclepubs.com/index.php/EJACI


European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI 
 

Vol. 1 No. 1 (2025) 6  

amount of work. As traffic increases, the number of new container instances is automati-
cally added, and conversely, when a container has a problem, it automatically drifts or 
restarts. Third, the system will continuously monitor the operating status of the container 
and check whether it is available through health detection. If a problem occurs, traffic to 
that container is automatically interrupted and diverted to other normal container in-
stances. Fourth, when a fault occurs, the device restarts quickly, quickly restores to normal 
through mirroring/backup, and the service interruption is shortest. 

5.2. Calculating the Optimal Path Based on the Link Status 
High-efficiency network architectures utilize link-state protocols such as OSPF (Open 

Shortest Path First) to make optimal routing decisions to make optimal path decision, but 
the instability of network structure will affect the efficiency and quality of network data 
transmission. Through the link state protocol, the status information of all nodes in the 
network can be obtained in real time, and the optimal path can be dynamically planned 
to ensure the transmission of data (Figure 3).  

 
Figure 3. Flow of Optimal Path Calculation for Link State. 

In the first stage, each router broadcasts its local link status information, receives to-
pology updates from other routers, and refreshes its own topology database accordingly. 
After that, Dijkstra algorithm is used to optimize the path through the weight and delay 
of the link. Eventually, if the link breaks or the topology changes, the algorithm recalcu-
lates the shortest path to ensure flow to the healthy node. 

Using link state protocol and Dijkstra algorithm, the network can automatically ad-
just the topology structure and provide good network connectivity. 

5.3. Balancing Consistency and High Availability for Fault Recovery  
In a distributed architecture, ensuring system availability and performance often re-

quires a tradeoff between data consistency and availability, leading to the adoption of 
eventual consistency models for certain data. In other words, some data inconsistencies 
are allowed for a short period of time on some data, and are corrected to a consistent result 
after the data is synchronized and updated. 

Tradeoffs between consistency and high availability: 
1) High Availability priority (AP model): Data inconsistency is tolerated before all 

replicas are synchronized, and the system ensures that data is consistent again 
after all replicas are synchronized. 

2) Consistency priority (CP model): The system prioritizes maintaining strong data 
consistency even at the cost of availability. In the event of a system fault, opera-
tions are suspended until consistency across replicas can be confirmed. Such as 
formula (7). 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑑𝑑𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 + 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑆𝑆𝑟𝑟 + 𝑇𝑇𝑆𝑆𝑟𝑟𝑛𝑛𝑆𝑆         (7) 
𝑅𝑅𝑅𝑅𝑅𝑅 is the recovery time target, 𝑇𝑇𝑑𝑑𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡 is the fault detection time, 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑆𝑆𝑟𝑟 is the 

failover time, and 𝑇𝑇𝑆𝑆𝑟𝑟𝑛𝑛𝑆𝑆 is the data synchronization time. This balance ensures that the 
system is able to choose the right balance between consistency and availability based on 
business requirements. 

https://pinnaclepubs.com/index.php/EJACI


European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI 
 

Vol. 1 No. 1 (2025) 7  

5.4. Monitor System Indicators Using the Big Data Monitoring Platform  
The construction of a high-reliability cloud computing platform is mainly reflected 

in the real-time monitoring of various system indicators to ensure the stable operation and 
uninterrupted service of the cloud computing platform. However, as cloud computing 
environments grow increasingly complex, traditional data collection and management 
methods can no longer meet the massive and dynamic information requirements. There-
fore, big data monitoring tools can be used for fast and accurate collection, storage and 
analysis of big data, such as the big data monitoring platform of Prometheus and Grafana, 
enabling cloud administrators to monitor the environment in real time, promptly identify 
potential issues, and provide optimization recommendations. In addition to its rich and 
flexible dashboard visualizations, Grafana also supports multi-metric analysis, so that 
technicians can more intuitively understand the status of the cloud computing platform, 
and can set custom alarm rules to automate monitoring. 

Workflow of big data monitoring platform: collect indicator information, such as 
CPU usage rate, memory usage rate, I/O throughput, etc., relying on services, nodes, con-
tainers and other forms; Store and analyze the collected data, store the data in the time 
series database, analyze and visualize the data in real time; Generate an alarm rule. Once 
an indicator exceeds the predefined threshold, the system automatically generates an 
alarm and takes the predefined measures.  

6. Conclusion 
This paper comprehensively analyzes the design strategies for improving the availa-

bility and reliability of cloud computing platforms. It summarizes the key technologies 
and challenges of high-availability architectures, proposes optimization methods such as 
containerization, multi-layer redundancy, and load balancing, and offers practical refer-
ence suggestions for enhancing the stability of cloud service platforms. Future work can 
focus on intelligent fault prediction and autonomous recovery mechanisms to further 
boost system resilience. 

References 
1. B. R. Cherukuri, "Development of design patterns with adaptive user interface for cloud native microservice architecture using 

deep learning with IoT," in Proc. IEEE Int. Conf. Comput., Power Commun. Technol. (IC2PCT), Greater Noida, India, 2024, pp. 1866-
1871, doi: 10.1109/IC2PCT60090.2024.10486720.  

2. C. Cai, N. X. Zhao, R. N. Xiao, and X. Z. Wang, "Study on prosperity index system and warning monitoring of road freight 
transport market based on big data," J. Highw. Transp. Res. Dev. (Engl. Ed.), vol. 17, no. 4, pp. 59-67, 2023, doi: 
10.1061/JHTRCQ.0000882. 

3. X. Xu, S. Zang, M. Bilal, X. Xu, and W. Dou, "Intelligent architecture and platforms for private edge cloud systems: A review," 
Future Gener. Comput. Syst., 2024, doi: 10.1016/j.future.2024.06.024. 

4. D. Mwale, L. Manda-Taylor, A. Likumbo, M. B. Van Hensbroek, J. Calis, W. Janssens, et al., "PP044 Topic: AS04–Emerging 
sciences, methodologies, big data and technology: Monitoring critically ill children in Malawi: A qualitative study," Pediatr. Crit. 
Care Med., vol. 25, no. 11S, p. e34, 2024, doi: 10.1097/01.pcc.0001084800.19764.b6. 

5. D. Xie, "Application of big data association rule algorithm in accounting network security monitoring and accounting system," 
Procedia Comput. Sci., vol. 247, pp. 327–334, 2024, doi: 10.1016/j.procs.2024.10.038. 

Disclaimer/Publisher’s Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s) 
and contributor(s) and do not necessarily reflect the views of PAP and/or the editor(s). PAP and/or the editor(s) disclaim any respon-
sibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in 
the content. 

https://pinnaclepubs.com/index.php/EJACI
http://doi.org/10.1109/IC2PCT60090.2024.10486720
http://doi.org/10.1061/JHTRCQ.0000882
http://doi.org/10.1016/j.future.2024.06.024
http://doi.org/10.1097/01.pcc.0001084800.19764.b6
http://doi.org/10.1016/j.procs.2024.10.038

	1. Introduction
	2. Theoretical Basis
	2.1. Definition and Development of Cloud Computing Platform
	2.2. Basic Concepts of High Availability Architecture

	3. High Availability Architecture Design
	3.1. Overall Framework for High Availability Architecture Design of Cloud Computing Platform
	3.2. Implementation of Multi-Layer Redundancy and Fault Tolerance Mechanism
	3.3. Load Balancing and Fault Recovery Design
	3.4. Data Backup and Disaster Recovery Design

	4. Key Difficulties in the High Availability Architecture
	4.1. Difficulties in Implementing Hardware Redundancy and Fault Tolerance
	4.2. Multi-Layer Network Redundancy and Failover Problems
	4.3. Conflict between Distributed Data Consistency and High Availability
	4.4. Technical Challenges of Automated Fault Detection and Recovery

	5. Optimize the High Availability Architecture
	5.1. Containerized Architecture Improves Service Fault Tolerance
	5.2. Calculating the Optimal Path Based on the Link Status
	5.3. Balancing Consistency and High Availability for Fault Recovery
	5.4. Monitor System Indicators Using the Big Data Monitoring Platform

	6. Conclusion
	References

