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Abstract: Dynamic human-scene cooperative novel view synthesis holds significant application 
value in fields such as Virtual Reality (VR), Augmented Reality (AR), film production, and digital 
humans. In Chapter 4, we implemented high-fidelity novel view synthesis of real human body sur-
face details based on Neural Radiance Fields (NeRF). Although the synthesis of dynamic human 
surface details achieved promising results, the slow inference speed of NeRF and its implicit mod-
eling of continuous space — lacking explicit geometric structures — make it difficult to decouple 
the human body from the scene. Consequently, NeRF fails to meet the requirements for dynamic 
human-scene cooperative novel view synthesis. Moreover, the absence of accurate semantic seg-
mentation of humans and scenes in three-dimensional space poses a critical challenge in accurately 
decomposing dynamic human Gaussians and static scene Gaussians. To address these issues, this 
chapter proposes an efficient dynamic human-scene cooperative novel view synthesis framework 
based on the 3D Gaussian Splatting (3DGS) method. The framework standardizes the spatial coor-
dinate systems of the human body and the scene to ensure geometric consistency and employs a 
triplane representation to reconstruct human Gaussians. Finally, a joint training strategy is adopted 
to simultaneously optimize the human and scene models. Comparative experiments on publicly 
available datasets demonstrate that the proposed method effectively corrects Gaussian misalign-
ment caused by geometric coupling between the human body and the scene. This results in more 
accurate decoupling of the human body and the scene, enabling flexible recombination of human 
and scene elements without additional training, thereby achieving high-quality dynamic human-
scene cooperative novel view synthesis. 

Keywords: 3D reconstruction; natural scene; parametric model; 3D gaussian splatting; scene decou-
pling 
 

1. Introduction 
In recent years, computer vision and graphics have developed rapidly, and the con-

cept of the metaverse has gained widespread attention, emerging as an influential topic 
in the development of the digital economy. As a crucial component of the metaverse, vir-
tual digital humans are undoubtedly the foundation and core of this emerging field. Re-
cent research has explored using Neural Radiance Fields (NeRF) to model 3D human av-
atars, typically relying on parametric body models as the structural basis for deformation 
during modeling [1-6]. 

However, in applications such as augmented reality (AR) and virtual scene live 
streaming, it is essential to efficiently decouple and model dynamic human bodies and 
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static scenes so that they can be flexibly recombined. This would enable new poses to drive 
human motion within different scenes. However, NeRF suffers from slow inference 
speeds and relies solely on implicit modeling of continuous spaces, which lacks explicit 
geometric structure. This makes it difficult to decouple the relationship between human 
bodies and scenes. Furthermore, the absence of accurate semantic segmentation between 
human bodies and scenes in three-dimensional space causes geometric coupling interfer-
ence, making it challenging to separate dynamic human Gaussians from static scene 
Gaussians. 

To address this challenge, this paper proposes a dynamic human–scene collaborative 
novel view synthesis method based on 3D Gaussian Splatting (3DGS). By standardizing 
the spatial coordinate systems of human bodies and scenes, the method ensures geometric 
consistency. A tri-plane representation is then used to reconstruct human Gaussians, and 
a joint training strategy is applied to train the human and scene models simultaneously. 
This approach enables high-quality dynamic human–scene collaborative novel view syn-
thesis and allows for flexible human–scene recombination without additional training. 

In summary, our main contributions are:  
1) We propose a novel human Gaussian representation method based on tri-plane 

feature encoding. A multi-layer perceptron (MLP) predicts both static human 
Gaussian parameters and pose-dependent dynamic human Gaussian parame-
ters from the tri-plane features. This ensures that the model can capture both 
local and global deformations induced by pose changes and their impact on 
color. 

2) We propose a joint optimization strategy to separately represent and jointly op-
timize human and scene models.This allows the dynamic variations of human 
Gaussians to provide additional geometric constraints for scene Gaussians, pre-
venting scene information loss due to occlusion. A depth loss is also introduced 
to constrain the joint optimization, ensuring correct occlusion relationships be-
tween the human body and the background, thereby improving the final novel 
view synthesis quality. 

3) This method enables the fast creation and rendering of animatable human ava-
tars and scenes from a small set (50–100 frames) of monocular videos captured 
in the wild. It achieves flexible human–scene recombination without requiring 
additional training and supports real-time rendering at 60 fps. 

2. Related Work 
Neural Radiance Fields (NeRF) introduced a joint representation of geometry and 

appearance for view synthesis using multi-view images, eliminating the need for complex 
capture setups [7]. Although NeRF was originally designed for static objects, recent works 
have extended NeRF to capture dynamic humans [1-4]. 

Xu et al. proposed H-NeRF, a dynamic 3D reconstruction method based on a struc-
tured implicit human model [8]. H-NeRF represents geometry using a signed distance 
field (SDF) and combines sparse multi-view synchronized videos with a parametric hu-
man model, significantly improving rendering sharpness and geometric integrity under 
complex human poses. HumanNeRF targets monocular video input, introducing a frame-
work for joint optimization of a skeleton-driven motion field and a non-rigid motion field 
[3]. It first coarsely adjusts the deformation field through skeletal pose parameters, then 
refines local dynamics using a generic non-rigid field, enabling neural radiance field re-
construction without multi-view data. Similarly, NeuMan also targets monocular video 
input, using an SMPL parametric model to establish a mapping between canonical and 
observation spaces [2]. To enhance accuracy, it introduces an end-to-end SMPL optimiza-
tion and correction network, allowing the model to learn more precise geometric infor-
mation by training on geometric error estimation. Unlike the above methods that require 
subject-specific training, MPS-NeRF addresses the challenging task of novel view and 
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pose synthesis across different subjects using sparse multi-view static images [9]. It pro-
poses a generalized NeRF framework, overcoming the reliance on single-subject training 
and multi-view video input. 

Due to NeRF's slow training and rendering speed, recent methods have adopted 3D 
Gaussian splatting to represent scenes using a set of 3D Gaussians [10]. This approach 
significantly improves training and rendering efficiency by splatting and rasterizing 
Gaussians. Some methods have extended this approach to dynamic humans. Moreau et 
al. integrated the SMPL parametric human model with Gaussian representation, using 
linear blend skinning (LBS) to drive deformation of canonical Gaussian primitives initial-
ized from SMPL [11]. Li et al. proposed a Gaussian modeling framework that combines 
explicit point-based representation with 2D CNNs, achieving high-fidelity digital human 
reconstruction through UV-space canonical Gaussian mapping [12]. 

Monocular video-based dynamic Gaussian human avatar reconstruction has also be-
come a key branch of 3DGS digital human research. ParDy-Human further expands hu-
man Gaussian representation by introducing parent patch indexing and surface normal 
features [13]. It employs per-vertex deformation (PVD) to drive canonical Gaussians to-
ward target poses and uses a deformation residual correction module to enhance the re-
alism of non-rigid motion and clothing dynamics. Human101 by Li et al. focuses on bal-
ancing fast reconstruction and real-time rendering [14]. It initializes canonical Gaussian 
primitives from multi-view keyframe point clouds and binds Gaussians to neighboring 
SMPL triangles using a triangle-face rotation association mechanism, directly driving ro-
tation and spherical harmonic coefficient updates. 

While these methods have achieved remarkable progress in dynamic human avatar 
reconstruction, they overlook the need for simultaneously recovering both dynamic hu-
mans and static scenes from monocular video. This limits their ability to efficiently decou-
ple human and scene representations and enable flexible recombination of dynamic hu-
man bodies and static backgrounds. 

Our method builds upon the 3D Gaussian splatting framework [10]. By standardiz-
ing the spatial coordinate systems of human bodies and scenes, our approach ensures ge-
ometric consistency. A tri-plane representation is used to reconstruct human Gaussians, 
and a joint training strategy is employed to simultaneously optimize human and scene 
models. This enables high-quality dynamic human–scene collaborative novel view syn-
thesis and allows for flexible recombination of human bodies and scenes without addi-
tional training. 

3. Method 
Given a monocular video containing camera motion, moving humans, and a static 

scene, our approach first standardizes the spatial coordinate systems of the human body 
and the scene to ensure geometric consistency between them. We then use a tri-plane rep-
resentation to reconstruct human Gaussians and employ a joint training strategy to opti-
mize both the human and scene models simultaneously. 

3.1. Coordinate Alignment 
Accurate alignment between the human body and the scene is a critical step in dy-

namic human–scene collaborative novel view synthesis based on 3D Gaussian Splatting 
(3DGS). Since human pose estimation typically operates within the camera coordinate 
system under an approximate orthographic projection model, coordinate alignment is 
necessary to ensure geometric consistency between the human body and the scene. 

PnP (Perspective-n-Point) Solution: The SMPL model’s 3D joint positions are ob-
tained in the local camera coordinate system, while scene Gaussians are reconstructed in 
the global coordinate system using COLMAP. PnP is used to solve for the rotation and 
translation between the SMPL model and the COLMAP scene coordinate system. 
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Translation Optimization: Due to potential noise or mismatched feature points, the 
initial translation vector obtained from PnP may contain errors. A projection error loss 
function is minimized to refine the translation vector. 

Scale Correction: PnP can solve for rotation and translation but cannot determine the 
absolute scale due to the nature of perspective projection. To resolve this, a ground plane 
equation is fitted using RANSAC from the scene point cloud. The scale factor is then esti-
mated based on the intersection of the ray from the camera center and the ground plane. 

By completing these steps, a final transformation matrix is obtained, enabling precise 
alignment between the SMPL coordinate system and the COLMAP scene coordinate sys-
tem, ensuring accurate geometric consistency between the human body and the scene. 

3.2. Human Gaussian Based on Tri-Plane Feature Representation 
To enable animatable human Gaussians, we define a canonical space based on the 

SMPL human model’s “Da-pose” and initialize human Gaussians using the SMPL mesh 
vertices. Since SMPL does not model hair and clothing, the density of human Gaussians 
is adaptively adjusted during training to capture these additional details. During render-
ing, linear blend skinning (LBS) weights are used to transform the human Gaussians from 
the canonical space to target poses, enabling novel view and pose synthesis. 

To effectively capture complex human surface geometry and texture, we use a tri-
plane feature representation. This approach organizes explicit 3D features into three or-
thogonal axis-aligned planes (XY, XZ, and YZ). Each plane’s resolution R determines the 
spatial scale, while the channel count C stores feature information. The process is illus-
trated in Figure 1. For a human Gaussian, we project its position in the canonical space 
onto the three planes and use bilinear interpolation to obtain the corresponding feature 
vectors at those positions. These three feature vectors are then aggregated through sum-
mation to derive the final tri-plane feature vector. This vector is subsequently fed into 
Multi-Layer Perceptrons (MLPs) to learn the corresponding parameters of that human 
Gaussian. 

 
Figure 1. Tri-plane Feature Representation Structure Diagram. 

Since the representation of the human body includes static (identity and environment) 
features and dynamic (pose-related) features, and different features have varying levels 
of complexity and learning difficulty, we employ four independent Multi-Layer Percep-
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trons (MLPs) to separately regress the static and dynamic Gaussian parameters. This ap-
proach allows for more effective separation and modeling of identity features and pose 
features. To better generalize the human body to novel viewpoints, we constrain all hu-
man Gaussian primitives to be isotropic by limiting the degrees of freedom in scaling to 1 
and setting the rotation to [1, 0, 0, 0]. 

Among these, the static color and opacity parameters are modeled by the first MLP: 
𝐶𝐶tri,𝑂𝑂tri = MLP1(𝐹𝐹𝑖𝑖) 

Where 𝐶𝐶tri ∈ ℝ48 represents the appearance color features of the human surface, pri-
marily dependent on static environmental factors such as texture and lighting. And 𝑂𝑂tri ∈
ℝ1 uses the Sigmoid activation function to constrain the output within the physical range 
of [0, 1], indicating the degree from fully transparent to completely opaque. The static 3D 
offset and static scale are modeled by the second MLP: 

𝛥𝛥𝑉𝑉tri, 𝑆𝑆tri = MLP2(𝐹𝐹𝑖𝑖) 
The static 3D offset 𝛥𝛥𝑉𝑉tri ∈ ℝ3 represents the center position of the human Gaussian 

in 3D space, capturing identity-related positional characteristics of the human body. 
Meanwhile, the static scale𝑆𝑆tri ∈ ℝ1 is constrained to positive values using the ReLU acti-
vation function, ensuring that the shape of the human Gaussian remains physically plau-
sible in 3D space. 

We use the third MLP to model the dynamic offset correction and dynamic scaling 
correction, with inputs being the tri-plane features and the pose parameters excluding the 
root node: 

𝛥𝛥𝑉𝑉pose,𝛥𝛥𝑆𝑆pose = MLP3(𝐹𝐹𝑖𝑖 ,𝜃𝜃) 
The dynamic offset correction 𝛥𝛥𝑉𝑉pose ∈ ℝ3is used to dynamically adjust the static po-

sition, modeling local deformations and positional changes caused by poses. The dynamic 
scaling correction 𝛥𝛥𝑆𝑆pose ∈ ℝ1is applied to modify the static scaling, capturing volume 
variations induced by different poses. 

The final position and scaling are synthesized from both the static and dynamic com-
ponents: 

𝑉𝑉𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝛥𝛥𝑉𝑉tri + 𝛥𝛥𝑉𝑉pose 
𝑆𝑆𝑖𝑖 = 𝑆𝑆tri + 𝛥𝛥𝑆𝑆pose 

The dynamic color correction is modeled by the fourth MLP, with inputs including 
the tri-plane features, pose parameters, and normal vector information: 

𝛥𝛥𝐶𝐶pose = MLP4(𝐹𝐹𝑖𝑖 ,𝜃𝜃,𝑛𝑛𝑖𝑖) 
The final color is synthesized from both the static and dynamic components as fol-

lows: 
𝐶𝐶𝑖𝑖 = 𝐶𝐶tri + 𝛥𝛥𝐶𝐶pose 

When transforming Gaussian primitives from the canonical space to the observation 
space, we use k-nearest neighbor interpolation to retrieve the nearest 6 vertices from the 
SMPL model and compute the Linear Blend Skinning (LBS) weights for each Gaussian 
primitive through distance-based weighted averaging: 

𝑊𝑊𝑖𝑖 = �
𝜔𝜔𝑗𝑗→𝑖𝑖
𝜔𝜔𝑖𝑖𝑗𝑗∈𝑁𝑁𝑖𝑖

𝑊𝑊𝑗𝑗 

Where 𝒩𝒩𝑖𝑖 represents the 𝑘𝑘 nearest vertices in the SMPL mesh to the Gaussian cen-
ter position, 𝑊𝑊𝑗𝑗 denotes the LBS weight of the 𝑗𝑗 vertex in the SMPL model, and 𝜔𝜔𝑗𝑗→𝑖𝑖 is 
the distance weighting term, indicating the influence of the SMPL mesh vertex on the 
Gaussian center. The distance weighting term is calculated using the following formula: 

𝜔𝜔𝑗𝑗→𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒 �−
‖𝑒𝑒𝑖𝑖 − 𝑣𝑣𝑗𝑗‖

2𝜎𝜎2
� ,𝜔𝜔𝑖𝑖 = � 𝜔𝜔𝑗𝑗→𝑖𝑖

𝑗𝑗∈𝒩𝒩(𝑖𝑖)

 

Where ‖𝑒𝑒𝑖𝑖 − 𝑣𝑣𝑗𝑗‖denotes the Euclidean distance between the Gaussian center and the 
SMPL vertex. 
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3.3. Joint Optimization 
This paper adopts a strategy of separate human–scene representation and joint opti-

mization, simultaneously optimizing both scene Gaussians and human Gaussians (includ-
ing tri-plane features and multi-layer perceptrons). 

Joint loss: We first introduce a joint loss as the foundation of the joint optimization 
framework. This loss allows dynamic changes in the human body to provide additional 
geometric constraints for scene modeling, thereby improving the completeness and con-
sistency of the synthesis results. 

We combine human Gaussians with scene Gaussians and splat them onto the image 
plane to obtain a joint rendering result. The joint loss is computed using L1 loss, structural 
similarity (SSIM) loss, and perceptual (VGG) loss: 

𝐿𝐿𝐽𝐽𝐽𝐽𝑖𝑖𝐽𝐽𝐽𝐽 = 𝜆𝜆1
𝐽𝐽𝐽𝐽𝑖𝑖𝐽𝐽𝐽𝐽𝐿𝐿𝐿𝐿1

𝐽𝐽𝐽𝐽𝑖𝑖𝐽𝐽𝐽𝐽 + 𝜆𝜆2
𝐽𝐽𝐽𝐽𝑖𝑖𝐽𝐽𝐽𝐽𝐿𝐿ssim

𝐽𝐽𝐽𝐽𝑖𝑖𝐽𝐽𝐽𝐽 + 𝜆𝜆3
𝐽𝐽𝐽𝐽𝑖𝑖𝐽𝐽𝐽𝐽𝐿𝐿vgg

𝐽𝐽𝐽𝐽𝑖𝑖𝐽𝐽𝐽𝐽  
Human body loss:Dynamic occlusion from the human body primarily affects the 

modeling of scene Gaussians, but it does not directly interfere with the modeling of hu-
man Gaussians. Therefore, more precise supervision can be applied separately using real 
images of the human region. 

We introduce a human loss by comparing the rendered image of only human Gauss-
ians against the real image containing only the human body on a plain background. The 
human loss is computed using L1 loss, structural similarity (SSIM) loss, and perceptual 
loss:  

𝐿𝐿human = 𝜆𝜆1human𝐿𝐿1human + 𝜆𝜆2human𝐿𝐿ssim
human + 𝜆𝜆3human𝐿𝐿vgg

human 
Depth Loss: In conventional Gaussian modeling, depth is generated through a 

weighted blending of multiple Gaussians along the ray direction. Due to the presence of 
multiple overlapping Gaussians, some Gaussians may appear in front of the human body 
or the scene because of depth errors, resulting in unrealistic occlusion relationships. 
Therefore, we introduce a depth loss to constrain the center positions of Gaussians, ensur-
ing that their depth matches the depth map. 

To generate the depth of the Gaussian closest to the ray direction, we apply a large 
opacity value to all Gaussians, thereby retaining only the most contributive Gaussian 
along the ray direction:  

𝐷𝐷(𝑒𝑒𝑝𝑝) = �(1 − 𝜏𝜏)𝑖𝑖−1
𝑖𝑖∈𝑁𝑁𝑟𝑟

𝐺𝐺proj,𝑖𝑖(𝑒𝑒𝑝𝑝)‖𝜇𝜇𝑖𝑖 − 𝑜𝑜‖22 

where 𝑒𝑒𝑝𝑝 is the pixel position in the image, 𝑜𝑜 is the camera center position, 𝑁𝑁𝑟𝑟rep-
resents the set of nearest Gaussians along the ray direction, 𝐺𝐺proj,𝑖𝑖is the projection of the 
ith Gaussian on the image plane, and ‖𝜇𝜇𝑖𝑖 − 𝑜𝑜‖22 is the Euclidean distance from the camera 
to the center of the Gaussian. This amplifies the contribution of the nearest Gaussian dur-
ing depth blending, reinforcing the constraints on occlusion relationships and geometric 
structure. 

Based on this, we define the depth loss as: 
𝐿𝐿depth = ‖𝐷𝐷(𝑒𝑒) − 𝐷𝐷�(𝑒𝑒)‖1 

In summary, our total loss is formulated as: 
𝐿𝐿 = 𝜆𝜆𝐽𝐽𝐽𝐽𝑖𝑖𝐽𝐽𝐽𝐽𝐿𝐿𝐽𝐽𝐽𝐽𝑖𝑖𝐽𝐽𝐽𝐽+𝜆𝜆human𝐿𝐿human + 𝜆𝜆depth𝐿𝐿depth 

4. Experiments 
We conducted experiments using the Citron and Lab subsets from the Neuman da-

taset. The Citron subset is based on outdoor human motion videos, while the Lab subset 
is based on indoor human motion videos. Both subsets were divided into training, vali-
dation, and test sets in an 8:1:1 ratio, with specific details provided in the Table 1. 
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Table 1. Dataset Distribution. 

Video Sequence 
Total Frames 

/ Frames 
Training Set 

Frames / Frames 
Validation Set 

Frames / Frames 
Test Set Frames / 

Frames 
Citron 102 30 4 3 

Lab 103 82 11 10 

4.1. Experimental Details 
The experiments were conducted on a computer equipped with an AMD Ryzen 7 

5800H processor, 16 GB of RAM, and an NVIDIA GeForce RTX 3060 graphics card, run-
ning on the Ubuntu 20.04 operating system. The parameters 𝜆𝜆𝐽𝐽𝐽𝐽𝑖𝑖𝐽𝐽𝐽𝐽 , 𝜆𝜆human , and 𝜆𝜆depth 
were set to 0.6, 0.4, and 1, respectively, while 𝜆𝜆1

𝐽𝐽𝐽𝐽𝑖𝑖𝐽𝐽𝐽𝐽 , 𝜆𝜆2
𝐽𝐽𝐽𝐽𝑖𝑖𝐽𝐽𝐽𝐽, and 𝜆𝜆3

𝐽𝐽𝐽𝐽𝑖𝑖𝐽𝐽𝐽𝐽  were configured as 
0.3, 0.7, and 1, with the tuples(𝜆𝜆1human, 𝜆𝜆2human, 𝜆𝜆3human) and (𝜆𝜆1

𝐽𝐽𝐽𝐽𝑖𝑖𝐽𝐽𝐽𝐽 , 𝜆𝜆2
𝐽𝐽𝐽𝐽𝑖𝑖𝐽𝐽𝐽𝐽 , 𝜆𝜆3

𝐽𝐽𝐽𝐽𝑖𝑖𝐽𝐽𝐽𝐽) being iden-
tical. The ADAM optimizer was employed for network optimization, with an initial learn-
ing rate of 10−3 and a cosine learning rate decay strategy applied to dynamically adjust the 
learning rate during training. This setup ensured efficient and stable model training, lev-
eraging the hardware capabilities and optimization techniques to achieve robust perfor-
mance. 

4.2. Qualitative Results 
To validate the advantages of the proposed method in the task of dynamic human-

scene collaborative novel view synthesis, experiments were conducted to compare our 
approach with the HUGS method and the Deformable-3DGS method. Both HUGS and 
Deformable-3DGS are capable of decoupling dynamic humans and static scenes from mo-
nocular human motion videos and performing collaborative rendering. The comparative 
analysis aims to demonstrate the superiority of our method in terms of rendering quality, 
scene consistency, and computational efficiency. 

Figure 2 presents the results of different methods on our self-constructed dataset. The 
HUGS method proposes a scene-embedded dynamic human Gaussian representation to 
separate static scene Gaussians from dynamic human Gaussians. However, it only em-
ploys the SMPL model and SFM point clouds to coarsely decompose humans and scenes, 
failing to fully account for the mutual influence between human Gaussians and scene 
Gaussians. This leads to misalignment of Gaussians during collaborative rendering, such 
as scene Gaussians that should be behind the human appearing in front of the human 
Gaussians, as shown in the blue box in Figure 2(c). The Deformable-3DGS method learns 
a deformation field to forward-map 3D Gaussians from canonical space to observation 
space, achieving separation of static scenes and dynamic objects. However, due to the lack 
of a specialized human model (e.g., the SMPL model) as a prior, the deformation field 
struggles to capture high-frequency motion features of humans, resulting in poor recon-
struction of dynamic humans, as illustrated in the orange box in Figure 2(d). In contrast 
to these methods, our approach aligns human and scene coordinates and decouples hu-
mans and scenes using tri-plane implicit representations for human Gaussians and ex-
plicit representations for static scene Gaussians. By adopting a joint optimization strategy 
and leveraging depth information, our method fully learns the interaction between hu-
mans and scenes, ensuring Gaussians appear in correct positions and avoiding erroneous 
occlusions. This ultimately achieves high-quality human-scene collaborative novel view 
synthesis, as demonstrated in the results shown in Figure 2 (b). 
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a) GT    b) Ours    c) HUGS  d) Deformable-3DGS. 

Figure 2. Qualitative Results. 

4.3. Quantitative Results 
We employed three metrics — SSIM, PSNR, and LPIPS — to evaluate the results of 

human-scene collaborative novel view synthesis. The quantitative results on the Neuman 
dataset are presented in Table 2. As shown in the table, our method effectively alleviates 
the issues of insufficient decoupling and weak collaboration between humans and scenes. 
It achieves better decomposition of dynamic human Gaussians and static scene Gaussians 
while correcting the effects of Gaussian misalignment. Consequently, the rendered images 
are closer to the ground truth, demonstrating the superiority of our approach in terms of 
rendering quality and fidelity. 

Table 2. Quantitative Results. 

 Citron Lab 
 PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ 

Ours 25.92 0.866 0.085 26.37 0.921 0.062 
HUGS 25.54 0.859 0.151 26.00 0.920 0.090 

Deformable-3DGS 17.81 0.759 0.249 21.15 0.897 0.165 

4.4. Ablation Experiments 
In Figure 3, we present the impact of ablation studies on our method. First, we 

demonstrate the effect of tri-plane feature representation by directly optimizing the 3D 
Gaussian parameters of the human body instead of using feature tri-planes and MLPs to 
learn them. To deform individual Gaussians, we retrieve the nearest six vertices from the 
SMPL model using k-nearest neighbor interpolation and generate interpolated LBS 
weights through distance-based weighted averaging. We render the results of the human 
body in the canonical pose to showcase the ablation outcomes. The experimental results 
reveal that, as each Gaussian is optimized independently, the color and transparency of 
individual Gaussians tend to overfit the training frames, leading to color artifacts, as 
shown in the red box in Figure 3(b). Additionally, unnatural shrinkage occurs at the waist-
leg junction of the human body, as illustrated in the yellow box in Figure 3(b). 
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a) Ours w/o   b) Tri-Plane Feature  c) w/o Joint Optimization. 

Figure 3. Results of Human Canonical Pose in Ablation Experiments. 

Furthermore, to validate the impact of the joint optimization strategy, we segment 
the human and scene using human masks and train human Gaussians with ground truth 
images containing only the human body (with the background set to random solid colors). 
Simultaneously, we train background Gaussians with ground truth images containing 
only the background (with the human region set to random solid colors). We also render 
the human body in the canonical pose to demonstrate the ablation results of this strategy. 
It can be observed that, due to the loss of boundary constraints from the scene on the 
human body, unnatural blurring appears around the human, as shown in the blue box in 
Figure 3(c). 

Additionally, to verify the impact of this strategy on scene Gaussians, we render the 
human-scene collaborative synthesis results for ablation experiments. It is evident that, 
due to dynamic occlusion by the human body, certain scene regions cannot be fully ob-
served from some viewpoints, leading to missing geometric and texture information in 
those areas. This results in floating or drifting artifacts, causing abnormal occlusion of the 
human body, as illustrated in the black box in Figure 4. 

 
a) Ours      b) w/o Joint Optimization. 

Figure 4. Results of Human-Scene Collaborative Rendering in Ablation Experiments. 

These ablation studies highlight the importance of tri-plane feature representation 
and the joint optimization strategy in achieving high-quality human-scene collaborative 
synthesis, ensuring both the fidelity of the human body and the consistency of the scene. 

5. Conclusion 
This paper addresses the challenges of geometric coupling and semantic interference 

between dynamic humans and static scenes by proposing a novel method for dynamic 
human-scene collaborative novel view synthesis based on 3D Gaussian Splatting. By 
standardizing the alignment between the human parametric model and the scene coordi-
nate system and introducing a tri-plane feature representation for human Gaussian mod-
eling, our approach enhances the disentanglement of human and scene elements while 
improving the robustness of human representation. Additionally, a joint human-scene op-
timization strategy is employed to alleviate the effects of dynamic occlusion on the scene, 
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thereby improving the accuracy of the synthesized views. This method effectively re-
solves issues such as Gaussian misalignment and incomplete scene reconstruction, achiev-
ing high-quality results in human-scene collaborative novel view synthesis. 

Despite these advantages, the current method offers limited flexibility for further ed-
iting of the synthesized content, which poses a challenge for broader application scenarios. 
In practical settings such as virtual reality (VR) and augmented reality (AR), users may 
wish to modify human poses, adjust background elements, or reconstruct parts of the 
scene within dynamic human synthesis results. Existing methods, however, lack the 
adaptability to support such interactive operations. Future work could explore the inte-
gration of image- or video-based editing networks, combined with human pose paramet-
ric modeling and scene rendering controls, to enhance the interactivity and editability of 
synthesized content. These advancements would contribute to more versatile and user-
friendly solutions, improving the method’s adaptability and scalability in real-world ap-
plications. 
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