
European Journal of AI,
Computing & Informatics

Vol. 1 No. 2 2025

Vol. 1 No. 2 (2025) 23

Article

Research on Data Analysis Application Based on Spark Com-
puting
Jialu Yan 1,*

1 Decoded Advertising, New York, 10005, USA
* Correspondence: Jialu Yan, Decoded Advertising, New York, 10005, USA

Abstract: With the development of the big data era, how to efficiently process and analyze massive
data has become an urgent problem that needs to be solved in various industries. Spark, as an open-
source distributed computing framework, quickly emerged as a mainstream tool in data processing
due to its excellent in memory data processing capabilities and user-friendly interface. Not only
does Spark have efficient computing performance, a rich ecosystem, and comprehensive support
for data analysis tasks, but it is also widely used in multiple fields such as data management, ma-
chine learning, and real-time analysis. This article will delve into the application of Spark in data
analysis platforms, reveal the current challenges faced, and explore corresponding optimization ap-
proaches, with the aim of significantly improving the efficiency and overall performance of data
analysis.

Keywords: Spark computing; big data analysis; data optimization; real time processing; distributed
computing

1. Introduction
In the context of the big data era, various industries are facing the challenge of how

to efficiently process and analyze massive amounts of information. Spark, as an open-
source big data distributed computing framework, has become a popular tool in the field
of data analysis in a short period of time due to its speed, versatility, and fault tolerance.
This article focuses on the application and optimization methods of Spark in big data pro-
cessing, and analyzes the role of its powerful distributed computing architecture in im-
proving data processing efficiency. The content also covers Spark's system architecture,
key modules, as well as its current application status and challenges in practical data anal-
ysis. By studying the optimization of data storage and access, memory management strat-
egies, and task scheduling mechanisms, practical ways to improve data analysis efficiency
have been proposed. Meanwhile, by citing practical cases such as log analysis, user be-
havior recommendation, and real-time data stream processing, the practicality and appli-
cation prospects of Spark in data analysis are further elaborated.

2. Overview of Spark Computing Platform Technology
Spark, as an open-source distributed computing platform for big data processing,

plays a crucial role in big data processing due to its excellent memory processing capabil-
ities and efficient task scheduling mechanism. This framework is characterized by modu-
lar design and integrates multiple key modules such as Spark Core, Spark SQL, Spark

Received: 14 May 2025

Revised: 19 May 2025

Accepted: 11 June 2025

Published: 12 June 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Open Access

European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI

Vol. 1 No. 2 (2025) 24

Streaming, MLlib, and GraphX, which can meet various complex application require-
ments including batch processing, real-time data stream processing, machine learning
analysis, and graph computing. Spark Core is responsible for core distributed task sched-
uling and memory management tasks, utilizing scalable distributed datasets (RDDs) to
improve data processing efficiency and ensure system reliability. The Spark SQL module
focuses on querying structured data, Spark Streaming focuses on processing real-time
data streams, the MLlib module integrates a distributed machine learning algorithm li-
brary, and the GraphX module focuses on processing graph data. Spark's modular struc-
ture gives it excellent adaptability and scalability when handling complex data analysis
tasks [1,2].

3. Current Status of Data Analysis Applications in Spark
3.1. Performance Issues and Optimization Requirements in Data Processing

When dealing with massive amounts of data, Spark's efficiency is often limited by
numerous elements. The huge data scale and complex task logic may cause excessive use
of memory, slow processing speed, and in severe cases, memory overflow. Uneven data
distribution can result in varying levels of burden on each computing node, thereby af-
fecting overall job efficiency. In addition, frequent Shuffle processes can result in a large
amount of data being transmitted between nodes, which undoubtedly slows down the
execution speed of tasks. Improper task allocation and resource control may also lead to
an increase in task waiting time and a decrease in resource utilization efficiency, which
together limit Spark's performance level [2].

3.2. Data Storage and Access Efficiency Issues
In large-scale data processing scenarios, Spark's performance is directly constrained

by data storage efficiency, which is one of the decisive factors determining its performance.
Diversified data storage formats, such as JSON, Parquet, CSV, etc., result in varying data
loading speeds, which undoubtedly have a negative impact on data processing speed.
Meanwhile, when Spark adopts HDFS or other distributed storage solutions, the data par-
titioning strategy and storage structure play a crucial role in the efficiency of task execu-
tion and load distribution among nodes [3]. If data partitioning is not reasonable enough,
data access lacks index support, I/O operations are too frequent, or unstructured data is
not properly optimized, these factors will significantly slow down the speed of data read-
ing and computation, thereby affecting the efficiency of the entire data analysis process
and the reliability of results.

3.3. Limitations of Spark in Complex Data Analysis Tasks
Despite Spark's strong computing capabilities in the face of heavy data analysis chal-

lenges, its inherent shortcomings cannot be ignored. When dealing with high-dimensional
and multi-dimensional data, Spark's memory usage and computational difficulty sharply
increase, often leading to performance difficulties. Especially when dealing with complex
graph theory calculations, deep learning models, and highly interactive data analysis,
Spark seems to lack specific optimization strategies, resulting in low computational effi-
ciency. Moreover, although Spark has shown strong adaptability in batch and stream pro-
cessing, it may encounter difficulties in task scheduling and resource allocation in com-
plex tasks that require frequent data conversion [4]. For tasks involving highly complex
algorithms, Spark's built-in algorithm library and optimization methods may not be fully
supported, which undoubtedly increases the difficulty of development and deployment.
These limitations pose a severe challenge to performance and processing capabilities
when faced with large-scale and complex data analysis tasks [5].

https://pinnaclepubs.com/index.php/EJACI

European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI

Vol. 1 No. 2 (2025) 25

3.4. Data Security and Privacy Issues
Ensuring the security and privacy of data has become a crucial issue in the process

of using Spark technology for data processing and analysis. With the increasing amount
of information, the urgency of protecting sensitive information is growing. When Spark
performs distributed computing tasks, data is transmitted and stored between nodes, and
the potential for data leakage during this process cannot be underestimated. Without ef-
fective encryption methods and comprehensive access permission management, the con-
fidentiality of data in the flow and storage process between nodes will be difficult to en-
sure. Meanwhile, Spark's inadequate functionality in data monitoring and abnormal be-
havior analysis limits the traceability of data operations, thereby increasing the likelihood
of data being abused or illegally accessed. For data analysis applications involving a large
amount of critical information, it is urgent to strengthen the security and privacy protec-
tion functions of the Spark platform [2].

4. Optimization Strategies of Spark in Data Analysis
4.1. Optimization of Data Storage and Access

When using Spark for big data analysis, the efficiency of data storage and access
plays a decisive role in the overall system performance. Choosing the appropriate data
storage format is crucial, such as column-based storage formats represented by Parquet
and ORC, which have efficient column processing capabilities and excellent compression
algorithms that can significantly improve data reading efficiency and reduce storage re-
quirements. Traditional line based storage methods such as CSV and JSON often result in
slow reads and increased memory usage when dealing with large-scale datasets. There-
fore, adopting more efficient data storage formats is an effective means to improve data
access efficiency. Meanwhile, a scientific data partitioning scheme is also essential for pre-
venting data skew and balancing node workloads. By implementing partitioning opera-
tions on data and ensuring balanced distribution among computing nodes, the parallelism
of task processing can be effectively enhanced, and the waiting time of cluster nodes can
be shortened [6].

Establishing indexes while storing data can quickly lock in target information and
significantly shorten the search process. By utilizing the caching and persistence methods
of the Spark platform, such as using the cache() and persist() functions, frequently ac-
cessed data can be retained in memory to prevent duplicate reads from disk. This not only
speeds up task processing but also significantly reduces input and output expenses. Table
1 provides a detailed display of the differences in reading speed and storage space among
different data formats.

Table 1. Comparison of Reading Performance and Storage Usage for Different Data Formats.

Data format Reading time (seconds) Compression ratio Storage space occupation
CSV one hundred and twenty nothing 5GB

JSON one hundred and ten nothing 4.8GB
Parquet thirty high 1.5GB

ORC thirty-five high 1.6GB

4.2. Memory Management and Cache
Spark utilizes memory management and caching mechanisms as its core optimiza-

tion techniques in large-scale data processing. Spark relies on its in-memory computing
architecture to achieve fast data access, avoiding frequent disk I/O operations and signif-
icantly improving computational efficiency. However, improper memory management
may lead to issues such as memory leaks, data corruption, or limited system performance.
Proper memory resource allocation becomes crucial, especially when dealing with large
datasets. In Spark, memory is mainly divided into two large blocks: storage and execution.

https://pinnaclepubs.com/index.php/EJACI

European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI

Vol. 1 No. 2 (2025) 26

Storage memory is mainly used for caching data, while execution memory is used to retain
temporary data during the calculation process (such as data in shuffle operations). Spark
can flexibly adjust the allocation of memory usage based on the workload of tasks to
achieve efficient use of memory. To prevent memory overflow, setting the total amount
of memory and adjusting the proportion of memory allocation reasonably is the core of
improving system performance [7].

Spark has rich data caching technologies, including functions such as cache() and
persist(). Among them, the cache() function is responsible for temporarily storing data in
memory, which is particularly suitable for small-scale datasets with high access frequency.
In contrast, the persist() function provides more flexible storage options, allowing users
to choose memory, hard drive, or a combination of both to store data according to their
needs, making it ideal for handling large-scale datasets or data that needs to be saved for
a long time. By cleverly utilizing these caching and persistence techniques, Spark can sig-
nificantly reduce unnecessary computational costs and greatly improve the execution
speed of jobs.

In terms of memory optimization, Spark uses the LRU (Least Recently Used) algo-
rithm to evict less accessed data to ensure maximum utilization of memory resources. For
example, in a certain job, the memory requirement for each data partition is M bytes.
When the size of the entire dataset exceeds the current memory capacity, the calculation
formula for memory allocation can be expressed as:

Total memory usage = �𝑀𝑀𝑖𝑖

𝑛𝑛

𝑖𝑖=1

In the case of excessive use of memory resources, Spark will adopt the Least Recently
Used (LRU) algorithm to clean up infrequently accessed data in the cache, thereby freeing
up necessary memory resources to meet the current computing pressure. By adjusting the
memory allocation strategy and efficiently utilizing caching mechanisms, Spark has sig-
nificantly improved the speed of large-scale data processing, reduced frequent disk read
and write operations, and ensured efficient and smooth data processing.

4.3. Task Scheduling and Parallelization Processing
Task scheduling and parallelization play a crucial role in the performance improve-

ment of Spark. Spark splits computing tasks into numerous small execution units (tasks)
and uses a DAG scheduler to control the order of task execution, ensuring that tasks are
effectively arranged based on their dependencies, and implementing parallel processing
in the computing cluster. This processing mode significantly improves computation speed
and shortens the time required to complete tasks. Spark implements a strategy called de-
layed computation, which means that the computation task is not immediately executed
at the beginning of creation, but rather a complete execution strategy graph (DAG) is con-
structed, which only triggers the computation process and carries out the task when cer-
tain action operations (such as collect(), save(), etc.) are performed. This method enables
Spark to integrate multiple operations together, reducing the storage and transmission
requirements of intermediate data, thereby further optimizing execution efficiency.

In parallel processing, the key to efficiency lies in the rationality of data partitioning.
Spark technology discretizes data into numerous blocks, which are then distributed to
various nodes in the cluster for parallel computation. By appropriately adjusting the num-
ber of data blocks and optimizing task allocation, it is possible to effectively prevent data
skew, ensure workload balance among nodes, and achieve optimal resource utilization.
Appropriate task allocation strategies and parallel processing methods enable Spark to
efficiently process large-scale datasets, greatly improving the overall performance of com-
putation.

https://pinnaclepubs.com/index.php/EJACI

European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI

Vol. 1 No. 2 (2025) 27

5. Application of Spark in Actual Data Analysis
5.1. Log Data Analysis and Optimization

In the practical application process of data processing, the analysis of log data con-
stitutes one of the key application scenarios. Many companies rely on collecting and ana-
lyzing log data to understand the operating status of their systems, gain insights into user
habits, and improve product performance. Spark, as an efficient distributed computing
framework, has demonstrated its unique advantages in processing log data. Taking the
user log analysis of a well-known e-commerce website as an example, the website gener-
ates a massive amount of user behavior records every day, covering a series of behaviors
such as browsing, clicking, and purchasing. With the help of Spark technology, the plat-
form can collect and store log information distributed on different servers into HDFS (Dis-
tributed File Storage System), and then use Spark SQL and DataFrame interfaces to clean,
format, and deeply mine the data. Specifically, Spark performs well in executing SQL que-
ries, efficiently completing tasks such as user access frequency statistics, purchasing be-
havior research, and click through rate calculations.

Spark's in-memory processing capabilities significantly improve the speed of data
processing, especially when dealing with large datasets, effectively bypassing the limita-
tions of disk I/O. Spark utilizes its caching mechanism and partitioning techniques to fur-
ther improve the efficiency of data reading and processing, ensuring the smooth operation
of computing jobs. Through this approach, the platform has achieved real-time analysis
of user behavior, and thus optimized product recommendation algorithms and advertis-
ing targeting strategies with precision. Through in-depth analysis of logs, e-commerce
websites can accurately grasp user needs, enhance user interaction experience and market
competitiveness of products. In the context of the big data era, it also ensures the ability
to quickly process and analyze real-time information flow.

5.2. User Behavior Analysis and Recommendation System
In the field of contemporary data analysis, Spark technology plays a key role in user

behavior analysis and the construction of personalized recommendation systems. With
the advancement of big data technology and artificial intelligence, many companies im-
prove product performance and service quality by deeply analyzing user behavior pat-
terns, thereby enhancing user interaction experience. Thanks to Spark's outstanding dis-
tributed computing capabilities, it occupies an indispensable position in the analysis of
user behavior data and the design of recommendation systems. Taking a streaming music
service platform as an example, the platform collects a massive amount of user behavior
information every day, such as users' listening records, favorite lists, search habits, etc. In
order to create a music recommendation system that meets users' personal preferences,
the platform must process this data quickly and accurately. The application of Spark ena-
bles the platform to collect and store user data from different servers into HDFS, and use
Spark MLlib (machine learning library) to preprocess and analyze this data in depth. In
practical operation, Spark can execute recommendation algorithms based on collaborative
filtering, identify the similarity between users, and then recommend personalized music
content that matches users’ preferences.

By leveraging Spark's distributed computing capabilities, it can significantly improve
the efficiency of processing large datasets, especially in the stages of user similarity calcu-
lation and model training for recommendation systems. The platform can update recom-
mendation algorithms in real-time by deeply analyzing user behavior information, and
customize personalized music recommendations for users, including songs, collections,
and playlists, in order to improve user engagement and platform user stickiness. Through
Spark's performance optimization, the recommendation system not only achieves faster
response times but also maintains high efficiency when processing large amounts of data.
This results in more accurate recommendations, which enhance user experience and im-
prove the platform's competitiveness in the market.

https://pinnaclepubs.com/index.php/EJACI

European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI

Vol. 1 No. 2 (2025) 28

5.3. Real Time Data Stream Analysis
The real-time data stream analysis function is a core technology of Spark in big data

applications, especially in applications that require rapid response and immediate deci-
sion-making, demonstrating its unique advantages. Taking the financial sector as an ex-
ample, real-time tracking of trading information and real-time grasp of market dynamics
play a decisive role in avoiding risks and seizing investment opportunities. A well-known
securities firm has adopted Spark Streaming technology to implement real-time data
stream analysis work, in order to grasp market dynamics and issue risk warnings in a
timely manner.

Enterprises utilize the combination of Spark Streaming and Kafka to efficiently cap-
ture and process real-time stock market trading information. Every second, the massive
amount of data surging out of the stock market includes key elements such as stock prices,
trading volumes, and time stamps. These real-time data then flow into the Kafka cluster
and are taken over by the Spark Streaming system for real-time data mining. Spark
Streaming breaks down continuous streaming data into micro-batches, allowing for in-
depth analysis of trading trends, price changes, and precise estimation of the real-time
volatility of individual stocks.

In specific business scenarios, Spark Streaming demonstrates powerful real-time big
data stream processing capabilities, supporting windowed operations on data streams
and gaining insights into stock price trends. Once the fluctuation of a stock price exceeds
the preset risk limit, the system will quickly trigger an alarm, prompting traders to take
necessary actions. Spark's efficient data processing performance, with its high throughput
and minimal latency, ensures that data can be processed within seconds. This enables se-
curities firms to respond rapidly to the market, develop trading strategies, and manage
risks in a timely manner. By utilizing Spark Streaming technology, the enterprise has suc-
cessfully achieved rapid processing and response to real-time transaction data, greatly
improving the accuracy of market prediction and risk warning.

6. Conclusion
Research on data processing and analysis using Spark technology demonstrates its

strong capabilities and broad application prospects in big data processing. Spark, with its
outstanding memory processing capabilities, strong distributed computing performance,
and modular system architecture, greatly improves the flexibility and efficiency of data
analysis work. In numerous practical application cases, Spark has demonstrated excellent
performance in log analysis, user behavior recommendation system, and real-time data
stream processing. However, Spark still faces many challenges in terms of data confiden-
tiality, memory resource management, task allocation, and storage efficiency, which ur-
gently require further technological innovation and optimization. With the continuous
advancement of technology and the expansion of application fields, Spark will continue
to play a crucial role in big data analysis. It will promote the utilization and innovative
development of data resources for enterprises and society.

References
1. L. Theodorakopoulos, A. Karras, and G. A. Krimpas, "Optimizing apache spark MLlib: Predictive performance of large-scale

models for big data analytics," Algorithms, vol. 18, no. 2, p. 74, 2025, doi: 10.3390/a18020074.
2. S. Muvva, "Optimizing Spark data pipelines: A comprehensive study of techniques for enhancing performance and efficiency

in big data processing," J. Artif. Intell. Mach. Learn. Data Sci., vol. 1, no. 4, pp. 1862–1865, 2023, doi: 10.51219/JAIMLD/sainath-
muvva/412.

3. F. Song, K. Zaouk, C. Lyu, A. Sinha, Q. Fan, et al., "Spark-based cloud data analytics using multi-objective optimization," in Proc.
IEEE 37th Int. Conf. Data Eng. (ICDE), 2021, pp. 00041, doi: 10.1109/ICDE51399.2021.00041.

4. M. P. Ramkumar, P. V. B. Reddy, J. T. Thirukrishna, et al., "Intrusion detection in big data using hybrid feature fusion and
optimization enabled deep learning based on spark architecture," Comput. Secur., vol. 116, p. 102668, 2022, doi:
10.1016/j.cose.2022.102668.

https://pinnaclepubs.com/index.php/EJACI
http://doi.org/10.3390/a18020074
http://doi.org/10.51219/JAIMLD/sainath-muvva/412
http://doi.org/10.51219/JAIMLD/sainath-muvva/412
http://doi.org/10.1109/ICDE51399.2021.00041
http://doi.org/10.1016/j.cose.2022.102668

European Journal of AI, Computing & Informatics https://pinnaclepubs.com/index.php/EJACI

Vol. 1 No. 2 (2025) 29

5. S. Ibtisum, E. Bazgir, S. M. A. Rahman, et al., "A comparative analysis of big data processing paradigms: Mapreduce vs. apache
spark," World J. Adv. Res. Rev., vol. 20, no. 1, pp. 1089–1098, 2023, doi: 10.30574/wjarr.2023.20.1.2174.

6. P. Sewal and H. Singh, "A critical analysis of apache hadoop and spark for big data processing," in Proc. 6th Int. Conf. Signal
Process., Comput. Control (ISPCC), 2021, doi: 10.1109/ISPCC53510.2021.9609518.

7. M. Babar, M. A. Jan, X. He, M. U. Tariq, et al., "An optimized IoT-enabled big data analytics architecture for edge–cloud com-
puting," IEEE Internet Things J., vol. 10, no. 5, pp. 3995–4005, 2022, doi: 10.1109/JIOT.2022.3157552.

Disclaimer/Publisher’s Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s)
and contributor(s) and do not necessarily reflect the views of PAP and/or the editor(s). PAP and/or the editor(s) disclaim any respon-
sibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in
the content.

https://pinnaclepubs.com/index.php/EJACI
http://doi.org/10.30574/wjarr.2023.20.1.2174
http://doi.org/10.1109/ISPCC53510.2021.9609518
http://doi.org/10.1109/JIOT.2022.3157552

	1. Introduction
	2. Overview of Spark Computing Platform Technology
	3. Current Status of Data Analysis Applications in Spark
	3.1. Performance Issues and Optimization Requirements in Data Processing
	3.2. Data Storage and Access Efficiency Issues
	3.3. Limitations of Spark in Complex Data Analysis Tasks
	3.4. Data Security and Privacy Issues

	4. Optimization Strategies of Spark in Data Analysis
	4.1. Optimization of Data Storage and Access
	4.2. Memory Management and Cache
	4.3. Task Scheduling and Parallelization Processing

	5. Application of Spark in Actual Data Analysis
	5.1. Log Data Analysis and Optimization
	5.2. User Behavior Analysis and Recommendation System
	5.3. Real Time Data Stream Analysis

	6. Conclusion
	References

